RADC-TR-83-85, Vol I (of two) Final Technical Report **April 1983** # RELIABILITY PROGRAMS FOR NONELECTRONIC DESIGNS Eagle Technology, Inc. William H. Skowis Wade C. Mangum > DISTRIBUTION FOR PUBLIC RELEASE: ROME AIR DEVELOPMENT CENTER Air Force Systems Command Griffiss Air Force Base, NY 13441 FILE COPY 10 17 010 This report has been reviewed by the BADC Public Affairs Office (PA) and is releasable to the National Technical Information Service (NTIS). At NTIS it will be releasable to the general public, including foreign nations. RADC-TR-83-85, Volume I (of two) has been reviewed and is approved for publication. APPROVED: Puston R Marchamid PRESTON R. MACDIARMID Project Engineer Janual V. Jeccan SAMUEL D. ZACCARI Acting Chief, Reliability & Compatibility Division FOR THE COMMANDER: JOHN P. HUSS Acting Chief, Plans Office John P. Kluss If your ad ress has changed or if you wish to be removed from the RADC mailing list, or if the addressee is no longer employed by your organization, please notify RADC (RBER) Griffies AFB NY 13441. This will assist us in maintaining a current mailing list. po not return copies of this report unless contractual obligations or notices on a specific document requires that it be returned. #### UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered) | REPORT DOCUMENTATION PAGE | READ INSTRUCTIONS
BEFORE COMPLETING FORM | |---|--| | | CCESSION NO. 3. RECIPIENT'S CATALOG NUMBER | | RADC-TR-83-85, Vol I (of two) | 4113624 | | 4. TITLE (and Subtitle) | 5' TYPE OF REPORT & PERIOD COVERED | | RELIABILITY PROGRAMS FOR NONELECTRONIC DES | Final Technical Report | | | 1 Sep 81 - 31 Aug 82 | | | N/A S. CONTRACT OR GRANT NUMBER(s) | | 7. AUTHOR(a) | 8. CONTRACT OR GRANT NUMBER(*) | | William H. Skewis | | | Wade C. Mangum | F30602-81-C-0190 | | 2. PERFORMING ORGANIZATION NAME AND ADDRESS | 10. PROGRAM ELEMENT, PROJECT, TASK
AREA & WORK UNIT NUMBERS | | Eagle Technology, Inc. | 62702F | | 2300 S. Ninth Street, Suite 400 | 23380249 | | Arlington VA 22204 | IZ. REPORT DATE | | | April 1983 | | Rome Air Development Center (RBER) Griffiss AFB NY 13441 | 13. NUMBER OF PAGES | | 18. MONI ORING AGENCY NAME & ADDRESS/I dillerent from Contr | | | 14. MONI. GMING AGENCY NAME & ADDMESSIT STREET THEM COURT | UNCLASSIFIED | | Same | | | | N/A SCHEOULE | | 16. DISTRIBUTION STATEMENT (of this Report) | | | Approved for public release; distribution | unlimited. | | | | | | | | | | | 17. DISTRIBUTION STATEMENT (of the abatract entered in Block 20 | , if different from Report) | | Same | | | | | | | | | 18. SUPPLEMENTARY NOTES | | | RADC Project Engineer: Preston R. MacDian | mid (RBER) | | | | | | | | 18. KEY WORDS (Continue on reverse side if necessary and identify b | y block number) | | , , , | liability Predictions | | | ress Analysis | | | ilure Mode and Effects Analysis | | | | | O. ABSTRACT (Continue on reverse side if necessary and identify b) | | | Current military standards for reliability | programs, reliability predictions and | | qualification testing were written primari | | | component standardization and the valid as | manuhrron or an exhousufiel isitnis | rate permit their direct application. These electronic systems, however, often contain nonelectronic assemblies that are critical to operational readiness, mission success or logistics support. Application of current standards to nonelectronic designs depends upon the type equipment being developed, previous DD 1 JAN 73 1473 EDITION OF I NOV 68 IS OBSOLETE UNCLASSIFIED . SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered) THE RESERVE THE PROPERTY OF TH The state of s SECURITY CLASSIFICATION OF THIS PAGE(When Deta Entered) applications experience, quantity of equipment to be produced and many other factors. To help identify these characteristics and formulate a set of criteria on which to base recommendations, the Rome Air Development Center distributed over 400 questionnaires throughout the Department of Defense and related industries. Volume I of this report summarizes the results of the survey on reliability programs for nonelectronic designs. Contents include a description of the questionnaire; response to the survey in terms of analysis and testing tasks and program requirements; and the degree of correlation between analysis results, testing data and field performance. Comments from respondees of the survey reflect considerable experience and knowledge on reliability programs and techniques as applied to nonelectronic designs. Recommended reliability tasks in Volume II of this report were prepared from opinions expressed by respondees combined with results of a literature search and an investigation of ongoing and past reliability programs. Volume II emphasizes the distinguishing characteristics of nonelectronic designs and provides guidelines for tailoring current reliability documents to nonelectronic designs with consideration given to mission criticality, development phase, program dollars, development time and other program constraints. THE REAL PROPERTY OF THE PARTY UNCLASSIFIED SECURITY CLASSIFICATION OF THE HAGE(When Date En- THE RESERVE OF THE PROPERTY ### RELIABILITY PROGRAMS FOR NONELECTRONIC DESIGNS VOLUME I: RESULTS OF SURVEY ### SUMMARY Current military standards for reliability programs, reliability predictions and qualification/acceptance testing were written primarily for electronic equipment where component standardization and the valid assumption of an exponential failure rate permit their direct application. These electronic systems, however, often contain nonelectronic assemblies that are critical to operational readiness, mission success or demand for logistic support and maintenance. Examples of such assemblies include antenna positioning mechanisms, tape and disk drives and printers. Reliability engineers often include nonelectronic assemblies within the total electronic equipment when planning a reliability program and formulating contractual requirements. Typical tasks imposed require a reliability program in accordance with MIL-STD-785, a reliability prediction in accordance with MIL-STD-756 and MIL-HDBK-217 and reliability testing in accordance with MIL-STD-781. The underlying assumptions and philosophies reflected in these documents may or may not apply to nonelectronic assemblies. Design practices, analytical techniques and testing procedures contained in current documents may be more effective if tailored or modified for application to nonelectronic equipment. Application of current standards to nonelectronic designs is somewhat of a subjective issue and depends upon the type equipment being developed, previous applications experience, quantity of equipments to be produced and many other factors. To help identify these characteristics and formulate a set of criteria on which to base recommendations, the Rome Air Development Center (RADC) distributed 409 questionnaires in December, 1981 throughout the Department of Defense and related 1 industries. This survey was designed to identify reliability techniques and practices currently used for nonelectronic assemblies, equipments and systems including nonelectronic portions of electronic systems and totally mechanical systems. A total of 112 completed questionnaires were returned to RADC. The next phase of the research program involved the collection and analysis of effectiveness data for reliability techniques and practices being used by respondees of the questionnaire. Results of this analysis were used to evaluate the capability of achieving numerical operational goals, cost effectiveness of various reliability tasks, statistical validity of analysis and test results, and the degree of correlation between reliability predictions and test results and between test results and field performance. である。 の対象の対象が、 は、 のでは、 ので During this period of evaluating the responses to the survey, discussions were held with managers of commercial and military reliability programs and a literature search was performed. Results of all tasks performed as part of the research effort were used to develop recommendations for meaningful and cost effective reliability program task requirements to be applied to nonelectronic designs during the development phase. The survey of reliability programs for nonelectronic designs provided a cross section of procedures and methods for performing such reliability tasks as program planning, analyses, component derating and developmental testing. Survey results permitted a correlation of reliability predictions, test results and field performance. This correlation of information aided in identifying the most effective analysis and test methods for achieving numerical reliability goals. Limited information as to the cost of performing reliability tasks was obtained from the survey and the cost effectiveness of reliability tasks could not be quantified. This report has been prepared in two volumes. Volume I summarizes results of the survey on reliability programs for nonelectronic designs. A description of the questionnaire is provided and response to the survey presented in terms of reliability tasks, program requirements, and the degree of correlation between analysis results, testing data and field performance. Conclusions reached as a result of the survey and recommendations for improving reliability programs for nonelectronic designs are included in Volume 1. Volume 2 of this report is applications oriented and provides recommended guidelines for the procuring activity and contractor to consider in specifying and performing reliability tasks for nonelectronic designs. ### TABLE OF CONTENTS | Section | <u>Title</u> | Page | |----------|--|------| | | SUMMARY | 1 | | 1. | QUESTIONNAIRE | 7 | | 2. | ANALYSIS OF
SURVEY RESULTS | 9 | | 2.1 | RELIABILITY ANALYSIS | 9 | | 2.2 | DEVELOPMENT TESTING | 12 | | 2.3 | RELIABILITY PREDICTION, TEST AND FIELD RESULTS | 15 | | 2.4 | SCREENING REQUIREMENTS | 18 | | 2.5 | OPERATIONAL ENVIRONMENT/DUTY CYCLE | 18 | | 2.6 | RELIABILITY PROGRAM TASKS/COSTS | 18 | | 2.7 | PARTS/STANDARDIZATION PRACTICES | 19 | | 3. | CONCLUSIONS | 21 | | 4. | RECOMMENDATIONS | 23 | | | APPENDICES | | | Appendix | <u>Title</u> | Page | | A | QUESTIONNAIRE ON RELIABILITY PROGRAMS FOR NONELECTRONIC DESIGNS | 27 | | В | NUMERICAL SUMMARY OF QUESTIONNAIRE RESPONSES | 47 | | С | SUMMARY OF RESPONSE TO QUESTIONNAIRE ON RELIABILITY PROGRAMS FOR NONELECTRONIC DESIGNS | 63 | | D | GENERIC PRODUCT SUMMARY OF YES/NO RESPONSES | 83 | ### 1. QUESTIONNAIRE The questionnaire as part of the survey on reliability programs for nonelectronic designs was distributed to various DoD agencies, industry and industrial societies. Table 1 provides a summary of the distribution of and response to the questionnaire. TABLE 1. RESPONDEES TO THE QUESTIONNAIRE 是不是是我们的是一个人,也是是一个人的,他们也是一个人的,他们也是一个人的,他们也是一个人的,他们也是一个人的,他们也是一个人的,他们也是一个人的,他们也是一个人 | Recipient | Distribution | Response | |---------------------------------|--------------|-------------| | Army | 40 | 12 | | Navy | 52 | 8 | | Air Force | 49 | 18 | | Misc DoD Activities | 3 | 2 | | NASA/Government Agency | 15 | 4 | | International Government/Agency | . Ž | i | | Industry (government contracts) | 122 | 43 | | Industry (commercial products) | 97 | 16 | | Industrial Society | 13 | Ť | | University | ii | ģ | | Unidentified | `- | 5 | | | 409 | 11 <u>2</u> | Table 2 provides a summary of the response in terms of equipment representation. The questionnaire as a part of the survey first determined the respondee's specific type of equipment for which the answers to follow would apply. This information provided a relationship between procedural methods currently being used and the generic types of equipment represented in the survey response. The comprehensive questionnaire included 59 questions directed at reliability engineering tasks constituting a total reliability program. Several questions were asked about operational goals and requirements of reliability programs being developed and whether or not MIL-STD-785 was being used for these programs. TABLE 2. EQUIPMENT REPRESENTATION IN RESPONSE TO QUESTIONNAIRE される となる | E | quipment type | No. of responses | |-----|--|------------------------| | 1. | Aircraft/Flight Control Systems | 16 | | 2. | Armored/Willeled Vehicles | <u>10</u> | | | Missile/Spacecraft Systems | 17 | | | Transit Systems | 2
3 | | | Construction Equipment | | | 6. | Engines/Power lants | 12 | | | Hydraulic/Rock * Engines | 6
3
6
8
12 | | 8. | Radar Systems | 3 | | | Computers/Avionics/Communications | 6 | | 10. | Air Conditioning Systems | .8 | | | Transmissions/Power Trains/Gear Boxes | | | | Motor/Generator Sets | 9
4 | | 13. | Ground Support Equipment | | | 14. | Power Plant Generators/Nuclear Power Plant Systems | 5 | | | Structures | 5
9
3
35 | | 16. | Home Appliances/Hand Held Mechanisms | _3 | | | Hydraulic/Pneumatic Components | | | | Electrical Components | 17 | | | Sensors/Gyros/Instr uments | 16 | | 20. | Mechanical Components | 24 | The next series of questions were designed to document the procedures in use for reliability analysis and testing. Of interest were those methods of analysis for stress margins and derating which may not yet be in procedural format. MIL-SID-781 is one possible standardized testing procedure but its universal application to all types of nonelectronic assemblies is questionable. Response to this series of questions helped to establish the necessity and feasibility of standardizing reliability tasks for nonelectronic equipment. Other questions in the survey were designed to determine the respondee's degree of correlation between reliability predictions, test results and field performance. Questions on parts selection procedures, application of analysis and test results, and the overall effectiveness of current standards for nonelectronic equipment applications were included. The questionnaire as distributed throughout the reliability engineering community is included in this volume as Appendix A. ### 2. ANALYSIS OF SURVEY RESULTS As a first step to determining the adequacy and cost effectiveness of applying current reliability standards to nonelectronic designs, responses to the questionnaire were analyzed by individual question. A numerical summary of questionnaire responses is included in this volume as Appendix B. Next, the information was compiled in chart form to provide an overview of the response on a variety of subjects. This summary is included as Appendix C. Finally, response to those questions which could be answered with a yes or no are summarized in terms of equipment representation in Appendix D. The second phase of the analysis consisted of a more detailed study of the response in each of the following elements of a reliability program for nonelectronic designs: - o Reliability analysis - o Development testing - o Screening requirements - o Operational environment - o Reliability program tasks/costs - o Parts/Standardization practices ### 2.1 RELIABILITY ANALYSIS The Failure Mode, Effects, and Criticality Analysis (FMECA) is believed by many to be the single most effective procedure to ensure reliability of a nonelectronic design. The majority of respondees regularly perform FMECAs and consider this analysis technique to be highly cost effective. A FMECA is considered by many to be most effective in the early development stages for initial screening and feedback to designers. This analytical procedure is very effective when used to interface reliability with design groups for early problem identification and later to help quantify failure modes. Also mentioned in several responses is the ability of a FMECA to pinpoint safety critical items. A majority of respondees cite the FMECA as an important and necessary part of every design effort. without a valid failure rate data base to perform an accurate reliability prediction of nonelectronic equipment, many respondees rely on the output of an FMECA to identify critical failure modes from which to perform a detailed reliability prediction. Response to the survey also identified the following uses for a FMECA. - o Initial screen and feedback at component level - Identification of catastrophic failure mechanisms - o Determination of inspection requirements in an overall Reliability Centered Maintenance (RCM) analysis - o Pinpoint safety critical aspects early in the design stage - Quantitative evaluation where known problems exist It was apparent from the survey that FMECAs are performed extensively even when not required by a contract. Existing procedures including ARP 926 and MIL-STD-1629 appear to be satisfactory for nonelectronic designs. The more detailed stress analysis was identified as expensive but useful for those development programs involving design risk. Overstress was identified on several responses as the major source of existing reliability problems and the stress analysis is apparently very cost effective as a design evaluation tool. Performing a stress analysis of electronic equipment is a fairly routine procedure and results can be used directly for a reliability prediction. MIL-HDBK-217 is a data base of failure rates as a function of stress levels for use in the prediction effort. Stress analysis for nonelectronic equipment is more of an art and can not usually be performed without the services of an experienced stress analyst. Also, results of the stress analysis are not expressed in terms of failure rate and safety factors must somehow be equated into probabilities of failure occurrence. A review of response to the questionnaire on reliability programs for nonelectronic designs indicates that there are few procedural methods in existence for stress analysis. Response to one of the questions on methods used for stress analyses was as follows. | | Procedure | Number of responses expressing utilization | |---|--------------------------|--| | 0 | Assumed stress ratio | 14 | | 0 | Detailed stress analysis | 43 | | 0 | Both procedures | 11 | Several respondees stated that their internal mechanical engineering group performed a stress analysis as needed. These responses are included in the above summary but it must be assumed that others did not respond because they themselves do not perform a stress analysis. Thus, the preceding table may not reflect all of the stress analyses being performed by engineering groups. To assure adequate safety margins, a variety of techniques including component derating are used. Although many technical reports have been issued on derating, probabilistic design methods and other design evaluation techniques, and respondees utilize the methods, relatively few companies have written procedures. A summary of response to this subject is as follows: | | | number of responses expressing utilization | |---|---|--| | o | Stress derating | 65 | | O | Probabilistic design | 26 | | 0 | Theoretical stress analysis | 35 | | 0 | Both stress derating & probabilistic design | gn 23 | Reliability predictions appear to be the least effective means of evaluating nonelectronic designs. Lack of component standardization for nonelectronic components has prevented the establishment of a usable data bank of failure rate data. Available data does not reflect actual operating field conditions, and the environmental and operational factors upon which predictions depend are not well defined. Section 2.3 will summarize correlations between analysis results and test/field results as experienced by respondees. In those cases where larger
corporations have established data banks for component parts and assemblies of similar types of equipment, failure rates from internal data banks are being used for reliability predictions. Estimates of reliability have been found useful for: allocating spares requirements; evaluating relative merits of design proposals and performing tradeoffs; establishing maintenance/inspection/replacement intervals; and determining if numerical requirements can be met, if and where improvements are necessary and if goals are attainable. In conclusion, predictions can be effectively applied to nonelectronic programs if corporate field data is available, predictions are based on similar types of equipment and if performed in conjuction with a stress analysis. MIL-STD-756 was generally thought to be unacceptable for nonelectronic designs. It appears that nonelectronic designs are more sensitive to operation and maintenance error than is the case for electronic equipment. Responses displayed considerable emphasis on the human element as one of the chief prediction problems for nonelectronic designs. MIL-STD-756 does not provide for these concerns. ### 2.2 DEVELOPMENT TESTING In some cases respondees reported internal procedures having been developed for mission requirements including equipment performance with environmental profiles and the consideration of operational environment. Many respondees rely on Test, Analyze And Fix (TAAF) growth testing with test results used to initiate corrective actions. It is felt by many that qualification testing, although too late in the development program cycle for reliability inputs, is in fact needed to monitor reliability growth. Respondees expressed the opinion that test engineers need to have the freedom to tailor test procedures to the particular characteristics of each equipment, but not so much that test results can be altered by inconsistent methods such as the determination of "relevant" and "non-relevant" failures as used in MIL-STD-781. Such practices may enable unsatisfactory equipment to pass test requirements. MIL-STD-781 for the most part is not appropriate to nonelectronic designs. A summary of response on the subject is as follows: | | Response | Number of responses | |---|---|---------------------| | 0 | MIL-STD-781 applicable in its present form | 11 | | 0 | Applicable but improvements needed for nonelectronic equipment | 10 | | 0 | Not applicable to nonelectronic equipment and new procedures are required | 34 | It is generally felt that new procedures should include normal and Weibull distributions and added test levels for nonelectronic equipment where the dominant cause of failure is wear out due to fatigue, abrasion, material corrosion or other time related factors. Some of the responders are of the opinion that reliability tests are not useful for estimating time-dependent failure rates because of the extremely long elapsed time necessary to have an acceptable level of statistical significance. Life tests are expensive for nonelectronic equipment because the equipment can not sit on a burn-in rack but must be mechanically exercised. The multi-modal characteristics of nonelectronic equipment and the resulting expense for tests cause many respondees to believe that reliability demonstration test data does not provide sufficient evidence of reliability growth. Accelerated testing is not used by many respondees because results can not correlate the stress of the test with levels of accelerated life. Also, an accelerated test tends to cause failures that would never occur in normal service. Some respondees indicated that accelerated testing is used only when normal usage and/or testing fails to precipitate failures. No detailed accelerated testing procedures could be detected although the following methods are used to detect age sensitive materials and other potential problems. Testing techniques are not necessarily designed to provide failure rate data for predictions or to use for qualification. - o salt spray - o fatigue life (endurance) determination - o temperature extremes - o overload - o overspeed - o overtorque - o extended limits - o increased cycle rate tests - o step-stress test to failure - o vibration Accelerated testing is being used successfully by some when physical wear characteristics are a determining factor for component life. Results are occasionally translated by "K" factors and used to predict component life. Accelerated testing appears to be more effective for small sample sizes and at lower levels of assembly. It is most effective for those components subject to wear out. Many respondees are of the opinion that accelerated testing has great potential as a method to achieve the following: - o Detection of dominant failure modes early in the development program for corrective action - o Shorter qualification test time, thereby lowering the cost of reliability testing - o Meaningful and effective tests established for equipments which under nominal conditions have an extremely long life Several respondees stated that accelerated tests can be highly effective where applicable: those equipments where the effects of accelerated factors such as increased load, stress or temperature are well known and reflect failure conditions and wear out characteristics experienced in service operation. ### 2.3 RELIABILITY PREDICTION, TEST AND FIELD RESULTS Table 3 represents the degree of success in quantitatively determining field reliability from results of analyses and testing. Appropriate comments from respondees which express actual experiences are included. Table 3 indicates that the degree of correlation between analysis, test and field results depends upon the data base available, realism of the tests being conducted, maturity of the system in the field, and quality of field service reports. Respondees indicated that modifications are required to environmental test methods to make them more realistic in terms of actual operation. Operational conditions for the equipment need to be better defined and incorporated into reliability programs. In many instances, according to respondees, environmental factors neglected or poorly defined in the design and development stages of programs are a major cause of equipment trouble in field use. Temperature, vibration, contaminants and shock were cited as examples of the shortcomings. Also expressed was the need to expand the use and scope of combined environment reliability test (CERT) procedures to ensure that the combined effects of many environmental stresses acting at once are not overlooked. # TABLE 3. CORRELATION OF PREDICTION AND TEST RESULTS AND FIELD PERFORMANCE | | Observation | Number of observations | |---|---|------------------------| | 0 | Close correlation between analysis and test results - if predictions are updated - sufficiently good to aid in locating design, quality and maintenance problems - for mature systems | 8 | | 0 | Close correlation between analysis results and field performance - actual experience data in commercial airplane business can be used - if reliability is evaluated under correct field conditions - FRAP program predictions have matched fleet performance of sampled equipment | 12 | | 0 | Close correlation between test results and field performance - if stresses and cycles are accurately defined - if all lab failures (relevant and non-relevant) are counted - sufficiently good to aid in locating design, quality and maintenance problems | g
y | | 0 | Projected reliability optimistic in comparison to test results - optimistic by 2:1 | 5 | | 0 | Analysis results optimistic in comparison to field performance - optimistic by 2-5:1 - field problems caused by inadequate training of operator and maintenance personnel - human error - predictions don't include workmanship or design deficiencies | 15 | # TABLE 3. (Continued) CORRELATION OF PREDICTION AND TEST RESULTS AND FIELD PERFORMANCE | | <u>Observation</u> | Number of observations | |---|--|------------------------| | 0 | Analysis results conservative with respect to field performance - after 3 years of aggressive reliability growth analytical results are exceeded in service by 20-50; - specified environments are not indicative of actual field usage | 6
L | | 0 | Field performance better than projected from test resu | lts 1 | | 0 | Test results optimistic in comparison to field perform - optimistic by 1.5-4:1 - tests provide an optimistic assessment of operational experiences | ance 5 | | 0 | Poor correlation between analysis and test results | 4 | | 0 | Poor correlation between analysis results and field performance - prediction results usually discarded because methods for reliability analysis are poor - analysis results inaccurate due to lack of meaningful data base - unpredicted failure modes or nonrecognition of dependence - questionable prediction techniques - qualitative aspects of prediction may be more usefully reliability predictions seldom account for in-service exposure to accidental environment
severity - poor field data for comparison - due to sparse data in meager or nonexistent data banks, predictions are useless | 10
1 | | 0 | Poor correlation between test results and field performance - testing is hardware oriented whereas field performance is influenced by personnel training, support equipment, etc test environment failed to simulate certain field conditions - lab tests are worst case and field use reflects inadequate training - definitions of failure not consistent | | ### 2.4 SCREENING REQUIREMENTS A review of the response to this subject question indicates that methods to screen nonelectronic equipments are as varied as the nonelectronic designs themselves. The following list of screening requirements is based on a priority basis and only one task is allotted per response. For example, if the respondee indicated that MIL-STD-781 testing and a run-in test on each equipment were both performed at his facility, only the run-in test is recorded as the preferable method. | | Screening requirement | Number of responses | |---|---|---------------------| | 0 | Product stress screening | 3 | | 0 | Run-in test | 7 | | 0 | MIL-STD-781 test | ર | | 0 | Sampling qualification test | 13 | | O | First article test | 1 | | ō | Failure data collection and corrective action | on 14 | | ō | General O.A. provisions | 37 | | 0 | Production inspection/test | ' 10 | | ō | No response | 25 | | • | | 172 | ### 2.5 OPERATIONAL ENVIRONMENT/DUTY CYCLE Comments from the survey of reliability programs for nonelectronic designs indicate that the same profiles are used for analyzing and testing nonelectronic designs as used for electronic designs. Most respondees (28) derive a best estimate of actual operational environment and duty cycle while only a few (7) develop special operational and environmental profiles for the mechanical portions of electronic equipment. Twenty-nine percent of the respondees either do not develop operational profiles (21) or use the profile as specified in the contract (11). #### 2.6 RELIABILITY PROGRAM TASKS/COSTS The approach taken to assigning and monitoring reliability tasks for nonelectronic designs appears to be no different than for electronic designs. Most reliability programs are established by contract or upon approval of a reliability program by corporate management. In some cases, tasks are assigned on a program-by-program basis with costs proportional to complexity of the analytical job, test procedure or other anticipated work load. Of the 72 responses to this question, 68% stated this was normal procedure. Detailed cost data is difficult to obtain and respondees provided no actual costs to perform the various reliability tasks. Another management approach is to include reliability engineering tasks as an integral part of the design effort and engineering budget. Reliability related tasks require about 10% of the total engineering budget for equipment critical to mission success and correspondingly less for nonessential equipment. Nineteen percent of those responding to this particular question staced that their facilities subscribe to this integrated management approach. The third group of respondees stated that money for reliability is appropriated only when there is pressure from a higher authority or when there are so many problems that money must be spent for reliability engineering tasks. Eight percent of those responding to this question indicated that such a condition exists at their facility. In summary, no unique methods for assigning program tasks for nonelectronic designs could be detected. ### 2.7 PARTS/STANDARDIZATION PRACTICES Information obtained from the survey on this important question was limited. Only twenty-seven facilities indicated that internal standard parts catalogues or other programs for parts control are in existence. Three respondees indicated that MIL-STD-965 was being used. ### 3. CONCLUSIONS As a result of the survey on reliability programs for nonelectronic designs, the following conclusions were derived. These conclusions were used toward development of the recommended reliability tasks contained in Volume 2 of this report. They have also been used to formulate recommendations for improving the effectiveness of reliability standards and procedures. 関係の対象が、という は、これにより、またいない。 またがらいない はっている () できません - O During the conceptual design phase it is desirable to conduct reliability evaluation tests on critical nonelectronic components as identified by the FMECA. Details of testing time, occurrence of wear, noise, etc. should be recorded. - o Care must be exercised in applying MIL-STD-781 to nonelectronic designs. Qualification tests may be completed prior to detection of time dependent failure mechanisms. - o For development programs of one-of-a-kind systems, the contractor will have to test components whenever possible during the development phase as components become available. The FMECA can dictate critical failure modes requiring test. - The procuring activity can not always dictate the testing program. The contractor must estimate the total test hours for each component or assembly in his test plan based on past experience, identified critical failure modes, availability of components and parts and data requirements to evaluate reliability. - o Testing procedures for nonelectronic equipment must be designed to evaluate potential failure modes. Wear rate and other time dependent failure mechanisms must be examined in any endurance test regardless of the design phase. - o Fatigue tests should be specified in the contractor's test plan for all parts subject to bending or twisting forces. Fatigue tests are destructive but can be performed at the part level. - o Reliability predictions are not generally applicable to nonelectronic designs unless based on detailed stress analysis or similar equipment operated under a similar environment. The FMECA is the more cost effective approach for nonelectronic designs. Reliability predictions should not be imposed in a contract for nonelectronic designs without an FMECA. PRECEDING PAGE BLANK-NOT FILLED and the state of t - Procedures contained in MIL-STD-781 are not generally used for nonelectronic equipment. Informal TAAF programs are generally relied upon with emphasis on reliability growth rather than a precise measure of reliability. Qualification testing may not be cost effective for nonelectronic equipment. TAAF combined with results from engineering development tests may provide a better indication of reliability. - Bayesian techniques are used to determine test times when only small sample sizes are available. - o Operational environment is much more critical in the analysis and testing of nonelectronic equipment than for electronic equipment because of the more direct interface with operator and environment. Equipment definitions in the analytical process must be very precise and test plans for nonelectronic equipment must reflect this sensitivity. Human factors reliability must be included as part of the nonelectronic reliability program. - o Unique designs of nonelectronic equipment prevent typical run-in times. ESS for production must be determined from development tests and FMECA results. - Very little data has been accumulated on the application of CERT to nonelectronic equipment. Costs of extended test times to detect wear out plus the large size of some equipments requires such tests to be performed at the component or part level. - o Standard derating procedures are not available for nonelectronic designs. The request for proposal should require a discussion of derating criteria in conjunction with requirements for a prediction analysis. ### 4. RECOMMENDATIONS The purpose of the survey on reliability programs for nonelectronic designs was to determine the adequacy and cost effectiveness of applying current reliability standards to nonelectronic designs. Although many portions of current reliability tasks and procedures as contained in MIL-STD-785, MIL-STD-1629, MIL-STD-781 and other documents can apparently be used effectively on nonelectronic designs as well as electronic designs, for which they were specifically written, the concensus of the respondees to the questionnaire is that sufficient differences exist to justify the development of new procedures for nonelectronic designs. Design review practices, analytical techniques and testing practices would be more effective if documented to accommodate the unique characteristics of nonelectronic equipment. The procedures could be included as part of existing standards and handbooks or as self contained documents. Information presently exists which could be made available to a designer or analyst for determining the reliability of a nonelectronic design but the information is widely scattered and there exists a definite lack of standardization in the application of reliability program tasks and procedures for nonelectronic reliability. A Handbook of Prediction Methods for Nonelectronic Designs is required which contains charts, sketches, graphs and application examples for predicting the reliability of impacting devices, sliding-crank mechanisms, actuators, and other nonelectronic components. Descriptions of the components for standardization purposes and common failure modes for the standard nonelectronic components need to be compiled and included in the Handbook. The recommended Handbook would contain sections on applying in-house data and considering new technology for reliability analyses. The Handbook should contain reliability prediction methods for nonelectronic equipment similiar to the methods in MIL-HDBK-217 with predictions based on the rate of occurrence for each component failure mode. Volume 2 of this report describes the relationship between FMECA, 是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就
第一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就 stress analysis and prediction procedures and provides guidelines for identifying failure modes and predicting their rate of occurrence. Sufficient information is available in technical reports and data banks to expand these guidelines and develop a prediction methodology for nonelectronic designs. Procedures for performing a FMECA, reliability prediction and stress analysis should be prepared specifically directed to nonelectronic designs consistent with engineering terms, physics of failure and common failure modes and included in the recommended Handbook of Prediction Methods for Nonelectronic Designs. Easy to apply stress analysis and prediction methods should be prepared as a part of a combined FMECA. prediction and stress analysis procedure which would establish the basic ground rules for nonelectronic reliability analysis tasks. Volume 2 of this report contains guidelines for performing reliability tasks which were derived from results of the survey. These guidelines should now be prepared in MIL-HDBK format with examples of the application of the procedures for specific nonelectronic designs. The completed procedures to be used by designers of nonelectronic equipment and reliability analysts would promote standard terminology for nonelectronic parts and devices, avoid the present duplication of reliability engineering procedures and increase the cost effectiveness of reliability tasks for nonelectronic designs. Results of the survey on reliability programs for nonelectronic designs indicate that MIL-STD-781 is applicable to electronic systems which contain relatively few nonelectronic components. However, for nonelectronic systems and nonelectronic components new testing procedures are required. New test methods for moving parts need to be developed and incorporated into a Handbook. The Handbook of Testing Procedures for Nonelectronic Equipment should contain sections on utilizing analysis results for designing test procedures and using Bayesian statistical techniques to minimize testing time. Qualification testing is not always possible for nonelectronic equipment from a statistical standpoint and THE RESERVE OF THE PROPERTY instructions need to be incorporated in the Handbook on using TAAF program results to qualify a nonelectronic design. Several respondees of the questionnaire indicated an application problem with the differences between the requirements contained in reliability standards and those contained in supporting Data Item Descriptions (DIDs). DIDs have been prepared for so many particular equipments and applications that significant discrepancies now exist in relation to applicable standards. A joint Industry/Government committee should compile recommended changes to standards and DIDs. Many DID's can be deleted or their requirements combined. ### APPENDIX A ### QUESTIONNAIRE ON RELIABILITY PROGRAMS FOR NONELECTRONIC DESIGNS | re
les | respo
ign ar | nsible or in which you have significant experience, relative to describe the relative to describe the relative to describe the relative to describe the relative to which the specific apply include: | |-----------|-----------------|--| | | A.
B.
C. | nonelectronic portions of military electronic systems; totally nonelectronic systems designed to military standards, and/or totally nonelectronic systems designed to industry standards. | | ۱. | With
(Plea | what types of nonelectronic systems/equipment are you associated? se be as specific as possible). | | | Syste | ms: | | | Compo | nents: | | 2. | | is your function most closely associated with reliability programs? Engineering Management Field Engineering Marketing Marketing Program Management Program Management Quality Control/Assurance Test Engineering Standards Standards Other Oth | | 3. | Which of el | Manufacturing Independent testing laboratory Government (Development Procurement Production Procurement Hanagement Support User Research T&E Military (Aviation Land Sea SubSea Space) Corporate Research and Development Design Engineering Software Development Other | | Com | ents: | |-------------|---| | How
deve | are reliability requirements and goals specified for your lopment programs? (Check all that apply) | | | System level failure rates Probability of mission accomplishment Safety Other | | | th factors are included in the derivation of reliability requirement goals? (Check all that apply) | | | Operational environment Type of performance or acceptance testing to be satisfied Maintainability requirements | | | Factors dictated by reliability prediction methods to be used Development budgets allocated to reliability Production processes | | | Cost restraints Other | | Comn | nents: | | How
phas | are reliability program requirements incorporated in the design se of your development program? (Check all that apply) | | | As a separate discipline monitoring the design engineers' efforts Integrated with manitainability design | | | As an integral part of the design team effort By contractual requirement | | | As a result of design analysis Integrated with system level goals | | 8. | Reliability values are apportioned to the: | |-----|--| | | System level (aircraft, radar, etc.) Equipment level (communications receiver, computer, etc.) Unit (hydraulic actuator, motor, etc.) Component (seals, shafts, linkage, etc.) | | | Comments: | | 9. | What method is used at your facility to ensure that requirements are met? (Check all that apply) | | | Must meet specific numerical requirements or is not accepted Penalty for reduced reliability (Lower price or loss of fee) RIW (Manufacturer must fix it if it fails under warranty) Incentives (Added fee or other
compensation for exceeding stated reliability requirements) Qualification Tests Reliability Growth monitoring | | | Comments: | | 10. | Does your reliability program distinguish between reliability as it affects the mission and as it affects logistics support? ives i | | | Comments: | | 11. | In your opinion, is MIL-STD-785 applicable to development programs involving nonelectronic equipment? | | | Comments: | | 1 | What is your opinion as to the cost effectiveness of applying the following methods for nonelectronic design analysis? Please comment in terms of system and component levels, specific types of equipment, etc | | | | |------|---|--|--|--| | FMEA | | | | | | | | | | | | - | Reliability Prediction | | | | | | Stress Analysis | | | | | | | | | | | | Qualification Testing Analysis | | | | | | Accelerated Testing Analysis | | | | | | | | | | | • | Reliability Growth | | | | | | | | | | | | Other | | | | | • | | | | | 是是我们的人,我们是我们的人,我们们是我们的人,我们们们们们的人,我们就是一个一种。他们们的一个一种。 | MIL-STD-1629 | MIL-STD-1629 | | |--|--|------------| | Comments: 14. Who in your facility normally performs reliability analyses of nonelectronic equipment? Department Department Electrical Design Engineering Reliability Design Engineering Quality Assurance Other 15. What is the lowest equipment level at which you perform a reliability analysis? Use A=system, B=component, C=part Reliability prediction FMEA Apportionment Stress analysis Other | Comments: | | | Department Department Analyst's functional title Mechanical Design Engineering Electrical Design Engineering Quality Design Engineering Quality Assurance Other Stress analysis Other Ot | | | | Mechanical Design Engineering Electrical Design Engineering Quality Design Engineering Quality Assurance Other 15. What is the lowest equipment level at which you perform a reliability analysis? Use A=system, B=component, C=part Reliability prediction FMEA Apportionment Stress analysis Other | | of | | Electrical Design Engineering Reliability Design Engineering Quality Assurance Other 15. What is the lowest equipment level at which you perform a reliability analysis? Use A=system, B=component, C=part Reliability prediction FMEA Apportionment Stress analysis Other | Department Analyst's functiona | l title | | analysis? Use A=system, B=component, C=part Reliability prediction FMEA Apportionment Stress analysis Other | Electrical Design Engineering Reliability Design Engineering | | | Reliability prediction FMEA Apportionment Stress analysis Other | analysis? Use A=system, B=component, C=part | eliability | | Apportionment Stress analysis Other | · | | | Apportionment Stress analysis Other | FMEA | | | Other | | | | Other | Stress analysis | | | | | | | | Comments: | | | 16. Are the results of reliability analyses actually used for any
following functions or activities at your facility? Please re
that this is not a theoretical text book question and your res
should be based upon your personal experience. | | | | |--|--|--|--| | | design reviews spare parts listings maintenance plans design program decisions cost trade-off decisions test planning reliability growth other | | | | P | lease comment on any experience you may have regarding the degree of orrelation between analysis results and actual field performance. | | | | - | | | | | • | o you perform Failure Mode and Effects Analyses (FMEA) on nonelectronic quipment? | | | | • | quipment? Yes No If yes, are they performed: (Check all hat apply) | | | | t | quipment? | | | negatika sebesah begasak bingkanga telanggahan dalan bin semangah bingan dalah sesarah bingan berasak bingan b A Company of the Comp | 19. | Which of the following approaches to conducting an FMEA apply to your analyses? (Check all that apply) | |-----|---| | | bottom up top down hardware functional mission oriented safety oriented maintenance oriented quantitative criticality qualitative criticality | | | Comments: | | | | | 20. | Do you use reliability/maintainability predictions as an input to determine any of the following? Check one or more: | | | Life Cycle Costs Acquisition Costs Logistic Support Costs Development Costs Spares Requirements | | 21. | What sources of data do you use to predict reliability? | | | MIL-HDBK-217 | | | Comments on application, validity or usefulness of these sources: | | | | | | | | | | | | | AND THE PROPERTY OF PROPER | 22. | Do you use reliability predictions as a means of determining whether design objectives for nonelectronic systems have been achieved? Yes No If yes, what method/procedure is used? | |-----|--| | 23. | Please comment on any experience you may have regarding the degree of correlation between reliability predictions and test results. | | 24. | Do you include effects of overhaul or maintenance actions in your reliability predictions? | | 25. | Is MIL-STD-756 a satisfactory tool for performing reliability predictions for nonelectronic equipment? | | 26. | What analytical techniques do you use to perform a stress analysis? At what equipment level? | | 27. | Do you use MIL-HDBK-5 to assess reliability? | | | | The distriction of the instruction of author of references the street of anniet research and a place the same with the state of the contraction of the same | 28, | Describe briefly the procedures you use to assure adequate safety margins. | |-----|---| | | theoretical stress analysis piece part testing data system qualification testing probabilistic design methods stress derating other | | | Description | | 29, | Is planned reliability growth included in your reliability programs? _ Yes _ No How are growth requirements specified and measured? | | 30. | How are test results incorporated into your revised growth projection? | | 31. | What methods do you use to ensure that inherent design reliability is preserved during production? | | | | | 32. | Do you have any internal parts selection procedures for nonelectronic components? Yes No | | | Describe: | | 33. | Do you develop individual operational and/or environmental profiles prior to testing nonelectronic equipments? | |-----|--| | 34. | Do you use MIL-STD-781 for testing nonelectronic equipment? | | | Revision B
 Revision C | | 35. | Do you use commercial procedures which are similar to MIL-STD-781 for testing nonelectronic designs? | | 36. | With that type of wear out characteristics are you concerned during reliability testing? | | 37. | What method do you use to adjust the reliability established from laboratory test results in estimating operational reliability? | | 38. | How are accept/reject criteria established for reliability tests? | | 39. | Do your testing procedures assume a constant failure rate distribution? Yes | | | |
2011年のようなは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、 THE SPECIAL REPORT OF THE PROPERTY PROP | Ю. | Do you believe MIL-STD-781 is appropriate for testing nonelectronic equipment? | |-----|--| | | system level | | | I_I component level | | 1. | Could MIL-STD-781 be improved to make it more applicable to nonelectronic equipment testing or should new procedures be developed? | | | Improvement Required New Procedures Required No Improvement or New Procedures Required | | | Suggestions for improvements/new procedures: | | 2. | What method(s) do you use to determine sample size and test time or number of test cycles when only small sample sizes are available? | | 3. | What method do you use to establish risk factors resulting from truncated tests? | | 14. | Please comment on any experience you may have regarding the degree of correlation between reliability testing and field performance results. | | | | 45. Indicate the tests most effective at your facility for verifying nonelectronic equipments. (Check all that apply) | | | Туре | Level of
System | Application
Component | <u>Materials</u> | |-----|--|---|----------------------|----------------------------------|------------------| | 16 | | Vibration Temperature Humidity Shock Salt Spray Step Stress Constant Stress Progressive Stress Environmental Screening Tests Corrosion Production Processes | | | | | •0. | Describe how reliability tests for nonelectronic equipment are normally performed at your facility. For a specified period of time Until a predetermined number of events/cycles are completed Until a predetermined number of failures have occurred Until catastrophic failure occurs Recurring until all major failure modes are identified Comments: | | | | | | 47. | reli | ou use accelerated testinability? _ Yes _ No
edures used: | _ | · | ce/ | | 48. | How reli | do you evaluate test resu
ability? | ults in e | stablishing quantitative | | | 49. | How
dist | do you analyze the valid
ribution and its effects | ity of yo
on test | ur assumed failure rate results? | | 50. Please rate the following Standards, Specifications and Handbooks on the basis of effectiveness in achieving and demonstrating reliability for nonelectronic equipment. Check the appropriate column to show whether the listing is applicable to the system or component levels or to both and then its degree of effectiveness. | DOCUMENT ID | TITLE/SUBJECT | APPLICATION Sys./Comp/Both | EFFECTIVENESS Exc./Good/Poor | |--------------|---|----------------------------|------------------------------| | FED-STD-151B | Metals: Test Methods | | | | MIL-STD-105D | Sampling Procedures and
Tables for Inspection by
Attributes | | | | MIL-STD-210D | Climatic Extremes for
Military Equipment | | <u> </u> | | MIL-STD-454G | Standard General Require-
ments for Electronic Equip-
ment | | | | MIL-STD-470 | Maintainability Program Requirements (for Systems and Equipments) | | | | MIL-STD-471A | Maintainability/Verification Demonstration/Evaluation | | | | MIL-STD-721B | Definition of Effectiveness
Terms for Reliability,
Maintainability, Human
Factors and Safety | | | | MIL-STD-756A | Reliability Prediction | | | | MIL-STD-757 | Reliability Evaluation from Demonstration Data | | | | DOCUMENT ID | TITLE/SUBJECT | APPLICATION Sys./Comp/Both | EFFECTIVENESS Exc./Good/Poor | |------------------|---|----------------------------|------------------------------| | MIL-STD-781B | Reliability Tests Exponential Distribution | | | | MIL-STD-781C | Reliability Tests Exponential Distribution | | | | MIL-STD-785B | Reliability Program for
Systems and Equipment
Development and Production | | | | MIL-STD-882A | System Safety Program for
Systems and Equipment;
Requirements for; | | | | MIL-STD-810C | Environmental Test Methods | | | | MIL-STD-965 | Parts Control Program | | | | MIL-STD-1304A(AS |) Reliability Reports | | | | MIL-STD-1312 | Fasteners, Test Methods | | | | MIL-STD-1378B | Requirements for Employing
Standard Hardware Program
Modules | _ _ | | | MIL-STD-1388 | Logistic Support Analysis | | | | MIL-STD-1472B | Human Engineering Design
Criteria for Military
Systems, Equipment and
Facilities | | | | DOCUMENT ID | TITLE/SUBJECT | APPLICATION | EFFECTIVENESS | |------------------|--|----------------|----------------| | | | Sys./Comp/Both | Exc./Good/Poor | | 4IL-STD-1535A | Supplier Quality Assurance
Program Requirements | | | | 4IL-STD-1543 | Reliability Program Require-
ments for Space and Missile
Systems | | | | AIL-STD-2068(AS) | Reliability Development
Tests | | | | MIL-STD-2070(AS) | Procedures for Ferforming
a Failure Mode, Effects and
Criticality Analysis for
Aeronautical Equipment | | | | MIL-STD-2074(AS) | Failure Classification for Reliability Testing | | | | MIL-HDBK-5C | Metallic Materials and
Elements for Aerospace
Vehicles | | | | 1-50 | Evaluation of Contractors
Quality Program | | | | 1- -51 | Evaluation of Contractors
Inspection System | | | | 1-53 | Guide for Sampling Inspection | | | | I-106 | Multi-Level Continuous
Sampling Procedures and
Tasks for Inspection by | | | manker to the first of the property pro The second control of the second seco | DOCUMENT ID | TITLE/SUBJECT | APPLICATION | EFFECTIVENESS | |---------------|--|----------------|----------------------| | | | Sys./Comp/Both | Exc./Good/Poor | | H-107 | Single-Level Continuous
Sampling Procedures and
Tables for Inspection by
Attributes | | | | H-108 | Sampling Procedures and
Tables for Life and Relia-
bility Testing (Based on
Exponential Distribution) | | | | H−109 | Statistical Procedures for Determining Validity of Suppliers' Attributes Inspection | | | | AIL-HOBK-217C | Reliability Prediction of
Electronic Equipment | | | | MIL-HDBK-251 | Reliability/Design, Thermal Applications | | _ _ | | 1IL-HDBK-472 | Maintainability Prediction | | | | 1IL-Q-9858A | Quality Program Requirements | | | | IAT-STD-3518 | Environmental Test Methods
for Aircraft Equipment and
Associated Ground Equipment | | _ | | IIL-E-5272C . | Environmental Testing,
Aeronautical and Associated
Equipment, General Speci-
fication for | | | | IIL-H-46855B | Human Engineering Requirements for Military Systems, Equipment and Facilities | | | The supplied of o | DOCUMENT ID | TITLE/SUBJECT | APPLICATION | EFFECTIVENESS | |-----------------|--|--------------------|----------------| | | | Sys./Comp/Both | Exc./Good/Poor | | NAT-STD-4108 | NATO Inspection and Quality
Control Requirements for
Industry; AQAP-1, AQAP-4,
AQAP-9 | | <u> _ _ </u> | | MIL-P-11268K | Parts, Materials and
Processes Used in Electronic
Equipment | | | | MIL-R-22732C | Reliability Requirements for
Shipboard Electronic Equip-
ment | | | | MIL-T-5422F | Testing, Environmental, Air-
craft Electronic Equipment | | | | ATSM-E6 | Definitions of Terms
Relating to Methods of
Mechanical Testing | | | | ARP 926A | Fault/Failure Analysis | | | | NAVAIR-01-1A-32 | Reliability Engineering
Handbook | | | | NAVAIR-01-1A-33 | Maintainability Engineering
Handbook | | | | RDH-376 | Reliability Design Handbook
published by the Reliability
Analysis Center (IIT Research
Institute) | | | | AD/A-005-657 | Nonelectronic Reliability
Notebook (US Dept. of
Commerce for Rome Air | | | THE STREET OF THE PARTY OF THE PROPERTY OF THE PARTY T | 51. | How are costs for reliability programs allocated, budgeted and monitored at your facility? | |-----|--| | 52. | Have any of your government contracts specified a requirement for inclusion of a reliability centered maintenance (RCM) program? [_ Yes _ No | | 53. | Do government directives (Data Item Descriptions, instructions, etc.) add to the effectiveness of contractual reliability and maintainability requirements? Yes No | | | Comments: | | 54. | Is there a significant lack of standardization in the nonelectronic product world in application of terms, specifications or qualified product lists? | | | If yes, what efforts are currently underway or should be initiated to solve this problem? | | | | | 55. | Should there be separate reliability specifications/standards for large equipments (flight control systems, howitzers, computers) as compared to smaller, more easily tested equipments (motors, printers, actuators)? | | | Comments: | The second secon THE RESERVE THE PARTY OF PA Many Mention of the Company C | | TELEPHONE NUMBER: | | | |------------
--|--|--| | | COMPANY/AGENCY:MAILING ADDRESS: | | | | | NAME: | | | | | | | | | 59. | Additional comments which will help us to determine the adequacy and cost effectiveness of applying current reliability specifications to nonelectronic equipment. | | | | 58. | Is sufficient information available to perform reliability analysis for nonelectronic design? If not, do you think a Handbook is possible which could provide procedures, guidance and material information? | | | | 57. | Does the added requirement of ruggedization for certain military equipment affect reliability? | | | | | If yes, identify the society/organization and the particulars of their projects. | | | | 50. | To your knowledge, are any of the engineering professional societies currently engaged in a productive effort to develop or upgrade standards or specifications that will have an effect on reliability/maintainability of nonelectronic equipment? Yes No | | | ### APPENDIX B ### NUMERICAL SUMMARY OF QUESTIONNAIRE RESPONSES ### Introduction: Nonelectronic equipments to which the responses herein apply include: - 69 (62%) indicated nonelectronic portions of military electronic systems - 51 (46%) indicated totally nonelectronic systems designed to military standards - 32 (29%) indicated totally nonelectronic systems designed to industry standards - 10 (9%) did not respond ### Questions: - 1. With what types of nonelectronic equipment are you associated? 112 responded to the question (100%). - 2. What is your function most closely associated with reliability programs? | Engineering Management | 26 | (23%) | |-----------------------------|----|-------| | Product Design | 6 | (5%) | | Reliability Engineering | 78 | (70%) | | Maintainability Engineering | 36 | (32%) | | Analysis | 20 | (18%) | | Testing | 21 | (19%) | | Evaluation | 24 | (21%) | | Field Engineering | 2 | (2%) | | Marketing | 2 | (2%) | | Program Management | 6 | (5%) | | Quality Control/Assurance | 15 | (13%) | | Test Engineering | 5 | (4%) | | Standards | 6 | (5%) | | Other | 7 | (6%) | 3. Which of the following categories most accurately describes your field of endeavor? | Manufacturing | 17 | (15%) | |------------------------------------|----|-------| | Independent Testing Laboratory | 1 | (1%) | | Government | 50 | (45%) | | Military | 31 | (28%) | | Corporate Research and Development | 10 | (9%) | | Design Engineering | 34 | (30%) | | Software Development | 4 | (4%) | | Other | 11 | (10%) | 4a. Is MIL-STD-785 used in development programs for nonelectronic equipment at your facility when not specifically called out in military contracts? | Yes | 40 | (36%) | |-------------|----|-------| | No | 49 | (44%) | | No response | 23 | (21%) | 4b. Do you utilize industrial requirements similar to MIL-STD-785 for development programs? | Yes | 17 | (15%) | |-------------|----|-------| | No | 45 | (40%) | | No response | 50 | (45%) | 5. How are reliability requirements and goals specified for your development programs? (Check all that apply) | System level failure rates | 90 | (80%) | |---------------------------------------|----|-------| | Probability of mission accomplishment | 73 | (65%) | | Safety | 45 | (40%) | | Other | 35 | (31%) | 6. Which factors are included in the derivation of reliability requirements and goals? (Check all that apply) | Operational environment | 101 | (90%) | |-----------------------------------|-----|-------| | Type of performance or acceptance | | | | testing to be satisfied | 66 | (59%) | | Maintainability requirements | 71 | (63%) | | Factors dictated by reliability | | | | methods to be used | 40 | (36%) | | Development budgets allocated to | | | | reliability | 32 | (29%) | | Production processes | 17 | (15%) | | Cost restraints | 35 | (31%) | | Other | 21 | (19%) | | No response | 3 | (3%) | 7. How are reliability program requirements incorporated in the design phase of your development program? (Check all that apply) | As | ā | separate | discipline | monitoring | |----|---|----------|------------|------------| | | | | | | | the design engineer's efforts | 59 | (53%) | |--|----|-------| | Integrated with maintainability design | 45 | (40%) | | As an integral part of the design | | | | team effort | 64 | (57%) | | By contractual requirement | 69 | (62%) | | As a result of design analysis | 40 | (36%) | | Integrated with system level goals | 55 | (49%) | | Other | 10 | (9%) | | No response | 7 | (6%) | 8. Reliability values are apportioned to the: | System level | 53 | (47%) | |-----------------|----|-------| | Equipment level | 67 | (60%) | | Unit | 57 | (51%) | | Component | 23 | (21%) | | No response | 9 | (8%) | 9. What method is used at your facility to ensure that requirements are met? (Check all that apply) | Must meet specific numerical require- | | | |--|----|-------| | ments or is not accepted | 55 | (49%) | | Penalty for reduced reliability (lower | | | | price or loss of fee) | 10 | (9%) | | RIW (Manufacturer must fix it if it | | | | fails under warranty) | 28 | (25%) | | Incentives (Added fee or other compen- | | | | sation for exceeding stated | | | | reliability requirements) | 28 | (25%) | | Qualification tests | 78 | (70%) | | Reliability growth monitoring | 61 | (54%) | | No response | 7 | (6%) | 10. Does your reliability program distinguish between reliability as it affects the mission and as it affects logistics support? | Yes | 70 | (63%) | |-------------|----|-------| | No | 33 | (29%) | | No response | 9 | (8%) | 11a. In your opinion, is MIL-STD-785 applicable to development programs involving nonelectronic equipment? | Yes | 73 | (65%) | |-------------|----|-------| | No | 13 | (12%) | | No response | 26 | (23%) | 11b. Can its application be cost effective in establishing a reliability program for nonelectronic equipment? | Yes | 70 | (63%) | |-------------|----|-------| | No | 12 | (11%) | | No response | 30 | (27%) | 12. What is your opinion as to the cost effectiveness of applying the following methods for nonelectronic design analysis? | FMEA - Cost effective | 87 | (78%) | |---|----|-------| | Reliability Prediction - Cost effective | 64 | (57%) | | Stress Analysis - Cost effective | 76 | (68%) | | Qualification Testing Analysis - | | | | Cost effective | 74 | (66%) | | Accelerated Testing Analysis - Cost | | | | effective | 52 | (46%) | | Reliability Growth - Cost effective | 49 | (44%) | | No response | 8 | (7%) | 13. Please list the industrial, governmental or internal procedures or methods which your facility actually uses for reliability analysis of nonelectronic designs. | MIL-STD-756 | 35 | (31%) | |------------------------------------|----|-------| | MIL-STD-1629 | 29 | (26%) | | ARP 926 | 8 | (7%) | | Nonelectronic Reliability Notebook | 48 | (43%) | | Assumed stress ratios | 17 | (15%) | | Detailed stress analysis | 51 | (46%) | | Other | 35 | (31%) | | No response | 12 | (11%) | 14. Who in your facility normally performs reliability analyses of nonelectronic equipment? | Mechanical Design Engineering | 28 | (25%) | |--------------------------------|----|-------| | Electrical Design Engineering | 5 | (4%) | | Reliability Design Engineering | 67 | (60%) | | Quality Assurance | 14 | (13%) | | Other | 18 | (16%) | | No response | 15 | (13%) | 15. What is the lowest equipment level at which you perform a reliability analysis? Use A = system, B = component, C = part | Reliability predic | ction A | 7 | (6%) | |--------------------|-------------|----|-------| | | B | 34 | (30%) | | | C | 53 | (47%) | | | No response | 5 | (4%) | | FMEA | A | 8 | (7%) | | | B | 36 | (32%) | | | C | 41 | (37%) | | | No response | 14 | (13%) | | Apportionment | A | 7 | (6%) | | | B | 52 | (46%) | | | C | 18 | (16%) | | | No response | 22 | (20%) | | Stress analysis | A | 1 | (1%) | | | B | 10 | (9%) | | | C | 68 | (61%) | | | No response | 20 | (18%) | | No response | | 13 | (12%) | 16. Are the results of reliability analyses actually used for any of the following functions or activities at your facility? Please remember that this is not a theoretical text book question and your response should be based upon your personal experience. | Design review | 89 | (79%) | |--------------------------|----|-------| | Spare parts listings | 51 | (46%) | | Maintenance plans | 58 | (52%) | | Design program decisions | 68 | (61%) | | Cost trade-off decisions | 61 | (54%) | | Test planning | 59 | (53%) | | Reliability growth | 53 | (47%) | | Other | 20 | (18%) | | No response | 7 | (6%) | 17. Please comment on any experience you may have regarding the degree of correlation between analysis results and actual field performance. | Good | 31 | (28%) | |--------------|----|-------| | Poor | 20 | (18%) | | Conservative | 7 | (6%) | | Optimistic | 9 | (8%) | |----------------------------|----|-------| | No response/not applicable | 45 | (40%) | # 18a. Do you perform Failure Mode and Effects Analyses (FMEA) on nonelectronic equipment? | Yes
No | 82 | (73%)
(21%) | |-------------|----|----------------| | | 23 | | | No response | 7 | (6%) | ## 18b. If yes, are they performed: (Check all that apply) | as part of every design/development | | | |--|----|-------| | effort | 45 | (40%) | | in event of unexpected catastrophic | | | | failures | 24 | (21%) | | only when reliability is determined to | | | | be below contract requirements | 3 | (3%) | | in accordance with MIL-STD-1629 | 29 | (26%) | | in accordance with ARP 926 | 10 | (9%) | | in accordance with other requirements | 24 | (21%) | | no response | 30 | (27%) | #
19. Which of the following approaches to conducting an FMEA apply to your analyses? (Check all that apply) | bottom up | 52 | (46%) | |-------------------------|-----------|-------| | top down | 58 | (52%) | | hardware | 57 | (51%) | | functional | 70 | (63%) | | mission oriented | 65 | (58%) | | safety oriented | 51 | (46%) | | maintenance oriented | 26 | (23%) | | quantitative critically | 37 | (33%) | | qualitative critically | 49 | (44%) | | no response | 21 | (19%) | 20. Do you use reliability/maintainability predictions as an input to determine any of the following? Check one or more: | Life Cycle Costs | 61 | (54%) | |------------------------|----|-------| | Acquisition Costs | 17 | (15%) | | Logistic Support Costs | 65 | (58%) | | Development Costs | 17 | (15%) | | Spares Requirements | 76 | (68%) | | No response | 23 | (21%) | 21. What sources of data do you use to predict reliability? · 教育是一下一次一次上次學班的一位一大 | MIL-HDBK-217 | 77 | (69%) | |---|----|-------| | RADC Nonelectronic Reliability Notebook | 66 | (59%) | | 3-M Data | 23 | (21%) | | AF-66 Data | 17 | (15%) | | GIDEP | 49 | (44%) | | MIL-HDBK-5 | 11 | (10%) | | Other | 64 | (57%) | | No response | 6 | (5%) | 22. Do you use reliability predictions as a means of determining whether design objectives for nonelectronic systems have been achieved? | Yes
No | 54 | (48%)
(39%) | |-------------|----|----------------| | | 44 | | | No response | 14 | (13%) | 23. Please comment on any experience you may have regarding the degree of correlation between reliability predictions and test results. | Good | 8 | (7%) | |--------------|----|-------| | Poor | 3 | (3%) | | Conservative | 24 | (21%) | | Optimistic | 24 | (21%) | | No response | 53 | (47%) | | ۲4, | reliability predictions? | i or maintenance act | ions in your | |------|---|--|-------------------------------| | | Yes | 50 | (45%) | | | No | 46 | (41%) | | | No response | 16 | (14%) | | 25. | Is MIL-STD-756 a satisfactory too predictions for nonelectronic equ | | lability | | | Yes | 31 | (28%) | | | No | 40 | (36%) | | | No response | 41 | (37%) | | 26. | What analytical techniques do you | use to perform a st | ress analysis | | | MIL-STD-217 procedures | 4 | (4%) | | | Probabilistic Stress/Strength | 7 | (6%) | | | Conventional Engineering/Mech | anical | | | | Stress/Strength | 18 | (16%) | | | Computer Aided | 5 | (4%) | | | NASTRAN/Finite Element | 10 | (9%) | | | No response/not applicable | 68 | (61%) | | 27a. | Do you use MIL-HDBK-5 to assess r | eliability? | | | | Yes | 11 | (10%) | | | No | 25 | (22%) | | | No response | 76 | (68%) | | 27b. | Is MIL-HDBK-5 a satisfactory tool characteristics of materials for | for determining proreliability evaluat | operties and
ion purposes? | | | Yes | 13 | (12%) | | | No | 14 | (13%) | | | No response | 85 | (76%) | | | | | | | | | | | 28. Describe briefly the procedures you use to assure adequate safety margins. | theoretical stress analysis | 56 | (50%) | |------------------------------|----|-------| | piece part testing data | 43 | (38%) | | system qualification testing | 55 | (49%) | | probabilistic design methods | 32 | (29%) | | stress derating | 69 | (62%) | | other | 15 | (13%) | | no response | 20 | (18%) | 29. Is planned reliability growth included in your reliability programs? | Yes | 58 | (52%) | |-------------|----|-------| | No | 38 | (34%) | | No response | 16 | (14%) | 30. How are test results incorporated into your revised growth projection? | Update old growth projection | 17 | (15%) | |-----------------------------------|----|-------| | Corrective action/TAAF | 5 | (4%) | | Graphically tailored in each case | 5 | (4%) | | Duane plot | 6 | (5%) | | Not performed | 7 | (6%) | | No response | 72 | (64%) | 31. What methods do you use to ensure that inherent design reliability is preserved during production? | None | 3 | (3%) | |-------------------------------|----|-------| | Basic quality control methods | 50 | (45%) | | Sample testing | 37 | (33%) | | Process inspection | 19 | (17%) | | No response/not applicable | 24 | (21%) | | 32. | Do you have any internal p
components? | erts selection procedu | res for nonelectronic | |-----|--|------------------------|-----------------------| | | Yes | 56 | (50%) | | | No | 30 | (27%) | | | No response | 26 | (23%) | | 33. | Do you develop individual prior to testing nonelectr | | ironmental profiles | | | Yes | 70 | (63%) | | | No | 26 | (23%) | | | No response | 16 | (14%) | | 34. | Do you use MIL-STD-781 for | testing nonelectronic | equipment? | | | Yes | 43 | (38%) | | | No | 48 | (43%) | | | No response | 21 | (19%) | | 35. | Do you use commercial proc
testing nonelectronic desi | | ar to MIL-STD-781 for | | | Yes | 11 | (10%) | | | No | 62 | (55%) | | 36. | With what | type | of | wear | out | characteristics | are | you | concerned | durf ng | |-----|------------|------|----|------|-----|-----------------|-----|-----|-----------|---------| | | reliabilit | v te | ti | na? | | | | | | | No response 39 (35%) | Fatigue | 31 | (28%) | |----------------------------------|------|-------| | Corrosion | 12 | (11%) | | Lubrication breakdown, contamina | tion | | | and leakage | 14 | (13%) | | Out of specified limits | 5 | (4%) | | Abrasion/Wear | 7 | (6%) | | Storage | 4 | (4%) | | None | 8 | (7%) | | No response | 51 | (46%) | 37. What method do you use to adjust the reliability established from laboratory test results in estimating operational reliability? The state of s | Derating factors | 23 | (21%) | |---------------------------|----|-------| | Judgement/past experience | 11 | (10%) | | Not performed | 20 | (18%) | | No response | 61 | (54%) | 38. How are accept/reject criteria established for reliability tests? | Contractually specified | 16 | (14%) | |----------------------------|----|-------| | Past experience | 10 | (9%) | | MIL-STD-781 procedures | 23 | (21%) | | Tailored for each program | 21 | (19%) | | No response/not applicable | 42 | (38%) | 39. Do your testing procedures assume a constant failure rate distribution? | Yes | 67 | (60%) | |-------------|----|-------| | No | 23 | (21%) | | No response | 22 | (19%) | 40. Do you believe MIL-STD-781 is appropriate for testing nonelectronic equipment? | No response | 47 | (42%) | |-------------|----|-------| | No | 44 | (39%) | | Yes | 21 | (19%) | 41. Could MIL-STD-781 be improved to make it more applicable to nonelectronic equipment testing or should new procedures be developed? | Improvement Required | 24 | (21%) | |----------------------------------|----|-------| | New Procedures Required | 43 | (38%) | | No Improvement or New Procedures | | | | Required | 5 | (4%) | | No response | 49 | (44%) | 42. What method(s) do you use to determine sample size and test time or number of test cycles when only small sample sizes are available? | Economic considerations | 28 | (25%) | |--|----|-------| | Contract requirements | 10 | (9%) | | MIL-STD-781 procedures | 5 | (4%) | | Statistical (B ₁₀ , Chi-square, | | | | Poisson, etc.) | 18 | (16%) | | Bayesian techniques | 3 | (3%) | | No response/not applicable | 49 | (44%) | 43. What method do you use to establish risk factors resulting from truncated tests? | General statistical techniques | 17 | (15%) | |--------------------------------|----|-------| | MIL-STD-781 procedures | 7 | (6%) | | Engineering judgement | 6 | (5%) | | Not performed | 5 | (4%) | | No response/not applicable | 77 | (69%) | 44. Please comment on any experience you may have regarding the degree of correlation between reliability testing and field performance results. | | | - 0 | |----------------------------|----|-------| | Good | 22 | (20%) | | Poor | 14 | (13%) | | Conservative | 5 | (4%) | | Optimistic | 4 | (4%) | | No response/not applicable | 67 | (80%) | 45. Indicate the tests most effective at your facility for verifying nonelectronic equipments. (Check all that apply) | Vibration | 81 | (72%) | |-----------------|----|-------| | Temperature | 80 | (71%) | | Humidity | 62 | (55%) | | Shock | 68 | (61%) | | Salt Spray | 43 | (38%) | | Step Stress | 21 | (19%) | | Constant Stress | 25 | (22%) | | Progressive Stress | 20 | (18%) | |----------------------------|----|-------| | Environmental | 58 | (52%) | | Screening Tests | 35 | (31%) | | Corrosion | 42 | (38%) | | Production Processes | 36 | (32%) | | No response/not applicable | 21 | (19%) | 46. Please describe how reliability tests for nonelectronic equipment are normally performed at your facility. | For a specified period of time | 57 . | (51%) | |-----------------------------------|-------------|-------| | Until a predetermined number of | | | | events/cycles are completed | 55 | (49%) | | Until a predetermined number of | | | | failures have occurred | 10 | (9%) | | Until catastrophic failure occurs | 16 | (14%) | | Recurring until all major failure | | | | modes are identified | 7 | (6%) | | No response/not applicable | 32 | (28%) | 47. Do you use accelerated testing methods to determine performance/reliability? | Yes | 52 | (46%) | | |-------------|----|-------|--| | No | 40 | (36%) | | | No response | 20 | (18%) | | 48. How do you evaluate test results in establishing quantitative reliability? | MTBF | 5 | (4%) | |-------------------------------|----|-------| | Basic statistical methods | 29 | (26%) | | Not performed | 7 | (6%) | | Expected level of improvement | 5 | (4%) | | No response/not applicable | 66 | (59%) | 49. How do you analyze the validity of your assumed failure rate distribution and its effects on test results? | Statistics/curve fitting | 14 | (13%) | |----------------------------|----|-------| | Weibull plot | 3 | (3%) | | Not performed | 14 | (13%) | |
Past experience | 4 | (4%) | | No response/not applicable | 77 | (69%) | 51. How are costs for reliability programs allocated, budgeted and monitored at your facility? | Percent of project budget | 12 | (11%) | |---------------------------------|----|-------| | Cost estimate of expected tasks | 17 | (15%) | | Contract/project office | 43 | (38%) | | No response/not applicable | 40 | (36%) | 52. Have any of your government contracts specified a requirement for inclusion of a reliability centered maintenance (RCM) program? | Yes | 26 | (23%) | |-------------|----|-------| | No | 55 | (49%) | | No response | 31 | (28%) | 53. Do government directives (Data Item Descriptions, instructions, etc.) add to the effectiveness of contractual reliability and maintainability requirements? | Yes | 60 | (54%) | |-------------|-----------|-------| | No | 22 | (20%) | | No response | 30 | (27%) | 54. Is there a significant lack of standardization in the nonelectronic product world in application of terms, specifications or qualified products lists? | Yes | 58 | (52%) | |-------------|----|-------| | No | 14 | (13%) | | No response | 40 | (36%) | | | Yes | 48 | (43%) | |--------------|---|--|-----------------------| | | No | 29 | (26%) | | | No response | 35 | (31%) | | 56. | To your knowledge, are any of currently engaged in a product or specifications that will hability of nonelectronic equi | tive effort to development to the second second to the second sec | op or upgrade standar | | | Yes | 27 | (24%) | | | No | 51 | (46%) | | | No response | 34 | (30%) | | 57. | Does the added requirement of equipment affect reliability? | ruggedization for c | ertain military | | | Yes | 45 | (40%) | | | No | 7 | (6%) | | | No response | 60 | (54%) | | 58 a. | Is sufficient information avanonelectronic designs? | illable to perform re | liability analysis fo | | | Yes | 20 | (18%) | | | No | 36 | (32%) | | | No response | 56 | (50%) | | 58b. | If not, do you think a Handbo | ook is possible which prial information. | could provide | | | Yes | 60 | (54%) | | | No | 9 | (8%) | | | *** | | | ### APPENDIX C SUMMARY OF RESPONSE TO QUESTIONNAIRE ON RELIABILITY PROGRAMS FOR NONELECTRONIC DESIGNS THE RESERVE OF THE PERSON T ### SUMMARY OF RESPONSE TO QUESTIONNAIRE ON RELIABILITY | AESPONSE
CODE | SYSTEM | COMPONENTS | MANAGENENT
PROGRAM | PREDICTION | FINEA | STRESS AMALYSIS | TEST PROGRAM | |------------------|---|---|--|--|--|---|---| | 1. | Fuel cart recuperator | | cost effective for nonelectronic equip- | ability prediction
methods are ineffec-
tive | initial screen and feedback | o For production
verification at
system level
o Computer design,
CADR used | o Use 781C since it
includes methods for
test and reliability
analysis
o Budget restricts
sample size/test sim | | | ery and propulsion
plants, nuclear
plants, aircraft and
automotive engines | fans, compressors,
motors, etc. | junction with IEEE Reliability Analysis Guide-785 applicable for nonelectronic equipment o Numerical requirements established at system level | tory for nonelectron-
ic equipment because
of lack of component
standardization
o Predictions effec- | first-of-a-kind
equipment at compo-
nent and system level
o Used in every
program for catastro- | o Effective utiliza-
tion at component
level
o Theoretical stress
analysis used to
ensure adequate
safety margins | o No testing per-
formed o 781 is applicable but improvement is required - test environment often fails to simulate field conditions resulting in limited use of test data | | | Systems | scopes, Péticles,
lightweight hand-
operated mechanisms | effective O Requirements based on system level fail- ure rates and cost | electronic Reliabili-
ty Notabook for
spares requirements
o 756 needs more
detail and examples | o Used in event of
reliability problems
and/or catastrophic
failures | | o 781 effectively
used, but needs adde
test levels for non-
electronic equipment
o Use 810C either
directly or at a
guide for environment
tal profiles | | 4. | Commercial aircraft systems | tors, etc. | applicable, cost
effective
o Reliability
requirements estab-
lished in terms of
system level feilure
rate, component MTSF
o Reliability control
by continuous con- | very useful for reliability predictions o Overhaul/mainte-nance considerations | o ARP-926A used to
detect catastrophic
failures on all pro-
grams
o A must for safety
critical components | o Very cost effec-
tive | o 781 not used - no
comment on its appli-
cation | | | Hydraulic equipment, enginos | | | o 756 not used, not setiofactory | o Not performed | a Expensive; useful
only in areas of
high risk | o 781 used but not appropriate for non-
electronic equipment o 781 requires new procedures with add distributions | | 6. | 1 | cal and mechanical components | effective
o Missign models de-
veloped to establish | mission related func-
tional equipment o 3-M and AF-66 data used but needs much tsanitizing and many tassumptions to use | | o Relation of stress
factors to failure
rates not usually
available | o 781 not used and new procadures required-favors TM appreach in testing program o Bayesian techniqued to determine test times when untawait sample sizes available | The state of s # MAIRE ON RELIABILITY PROGRAMS FOR NONELECTRONIC DESIGNS | | **** PRASSAM | ACCEL EDATED TERRING | her canal tour analysis | 1 | FAILURE RATE | AMALYSIS/TEST/FIELD- | HISCELLAMEOUS | |--------------------------------|--|---|---|---|---|---|---| | etton
m at
design, | TEST PROGRAM O Use 781C since it includes methods for test and reliability analysis o Budget restricts sample size/test time | | | PARTS SELECTION O No internal part selection procedures | DISTRIBUTION Constant failure rate assumed for MTDF calculation | results
very poor and prediction results | use 781 - for com- | | | o No testing per-
formed o 781 is applicable
but improvement is
required - test
environment often
fails to simulate
field co.ditions
resulting in limited
use of test data | o Effective for first
article testing, at
system and component
leval | o Monitors to ensure
requirements are met
for matured equipment | | o Depends on equip-
ment under test | o Analysis results inaccurate due to lack of meaningful data base o Correlation between prediction and test poor due to different environments o Test environment failed to simulate certain field conditions | | | | o 781 effectively
used, but needs added
test levels for non-
electronic equipment
o Use BIOC either
directly or at a
quide for environmen-
tal profiles | o Not used | u No reliability
growth program | o No internal parts
selection procedures | D Constant failure rate assumed | o Analyses results are conservative with respect to field performance 3:1 o Field problems caused by inadequate training of operator and maintenance personnel | | | t offec- | o 781 not used - no
comment un its appli-
cation | o No procedures used-
not very affective | O Initial & mature
MTBF specified and
monitored
U Very important to
monitor in early
development phase | o Internal standard
parts catalogue used | o Tailored to application, usually Weibuil | o Close correlation of prediction to field results in commercial airplane business because actual experience data can be used | | | may useful mas of | u 781 used but not appropriate for non-
electronic equipments o 781 requires new procedures with added distributions | level | o Can be very effec-
tive but must be
separately funded to
work
o TAAF used
o Requirements speci-
fied based on two
years from initial
fielding | | o Constant failure
rate assumed indis-
criminately; need
more distribution
analysis | o Prediction analysis
optimistic with
respect to field
performance due to
human error | | | of btress
failure
sually | New procedures | o No procedures used;
has unly limited
experience | o Use*ul during devalopment programs to predict progress towards requirements and feasibility of requirements | | | | Qualification tests important for uncovering failure modes with high probability of Occurrence a Specs must be detailed and quanti- fied in terms a designer ran under- stand and measure | ### SUMMARY OF RESPONSE TO QUESTIONNAIRE ON RELIA! | RESPONSE
CODE | SYSTEM | COMPONENTS | Management
Program | PREDICTION | FNEA | STRESS ANALYSIS | | |------------------|--|--|--|---|---|---|--| | 7, | Aircraft structures, construction equipment structures, surgical implants | Primarily materials
selection of struct-
ural alloys both
ferrous and non-
ferrous | c 765 used and applicable - cost effectiveness is system dependent o Performance requirements used to established system level failure rates; reliablity control by qualification tests, RIM and growth monitoring | o 755 used, but not
satisfactory | o 1629 used o FMEA's cost effec-
tive for system only | o Useful for com-
ponents
o MASTRAN finite
element computer
program used | 0 1 | | 4. | Aircraft systems, airfield equipments and control gear | cal, fuel, and gas-
eous components of
aircraft equipment | o 785 not used o Use UK Ministry of Defense Standard 00- 40 "Achievement of Reliability and Main- tainability" o Requirements based on mission success probability o incentives used in verifying reliability | but essential
o IM data bases
normally used | o Well worth effort
at all indenture
levels if done at
correct time | a Estential where
meaningful, i.e.
pressure vessels,
undercarriages, etc. | con
rei
rei
o / | | 9. | Heavy machinery,
vehicles, home app-
liances, computer
hardware, etc. | Turbines, pumps, high speed printer, etc. | o 785 applicable,
used as guide - in-
ternal procedures
used | o internal procedures
used
o in-house failure
rate data bank used | a Applicable to
subsystem, system
o Best for new pro-
ducts and in event of
catastrophic failures | | o to the contract of contr | | 10. | Fighter aircraft
systems | | n Mo comment on 785
or internal relia-
bility program | o No comment un 756 o Predictions are required for deter- mining inspection intervals and main- tenance plans o Difficult for non- electronic parts he- cause many are specifically designed and non-standardized | o Vital to RCM method
of determining
system/unit inspec-
tion requirements | o Very important to
load hearing com-
ponents particularly
where redundancy is
not possible | | | 11. | Flight Control servo
mechanisms | Servos | o 785 not used - re-
liability require-
ments established in
terms of MTBF for
accentance test
o Tist results used
to determina correc-
tiva action | o 756 satisfactory o Predictions give approximate MTSF for use as yardstick to measure proposals | n ARP-926 used
o Very effective-
pimpoints safety
critical aspects
early in design
stage | o 217 used
o Very effective to
detect piece - parts
not properly dereted
in design | 1 33 | | 12. | Muclear power plant
systems | | o 785 effective, but used as a reference only; in-house standards utilized o Numerical reliability requirements established at system level; reliability control by qualification tests | ures need to be
developed
o Predictions cost
effective but metho's
need improvement | o Use in-house FMECA which is suitable for analyzing namelectronic systems | | D A | ## NAIRE ON RELIABILITY PROGRAMS FOR NONELECTRONIC DESIGNS | | | ! | l | l l | FAILURE RATE | AHALYSIS/TEST/FIELD- | MISCELLANEOUS | |--|--|---|---|-----------------------------
--|---|---| | onents
Macteau cinion | TEST PROGRAM o Mechanical opera- tional environment extablished for each test program | ACCELERATED TESTING O System dependent; effective for many missile systems O Salt spray and overstress tests to determine fatigue characteristics | RELIABILITY OROWTH | | DISTRIBUTION O Gausstan, Weibull, log normal used for evaluating test results | USE CORRELATIONS | CHANCENTS, | | maningful, i.e.
pressure vessels
mdercarriages, etc. | | mothods avisted | o Very cost affective
for components
o Duane model assumed | | fallure rate assumed | 1.5-5:1 | o Past experience
and improved tech-
nology determine
reliability require-
ments | | ints | o 781 not used - in-
house testing stard-
ard used
o Start in early
stages for greatest
effectiveness
o Qualification tests
by sampling used to
ensure reliability
requirements are met | | | etc. | o Do not assume con-
stant failure rate;
considering Meibuil
d For small sample
size use marginal
analysis for approx-
imate distribution
of life | common conclusions | o 781 should consider impact of assembly and positional adjustment, i.e. adjusting screw o Correlation/reference of field data needed in 756 o Reliability programs must be individually tailored | | ead hearing com-
beents particularly
here redundancy is
bt possible | Ability requirements | o Important for com-
ponents subject to
wear out | o Effective at total
system level only | | | ing is hardward ori-
ented whereas field
performance is in-
fluenced by personnel
training, support | o Reliability approach is the sam for nonelectronics a and electronics al system level o Reliability pro- grams need more emphasis on logis- tics support | | design | o 781 used fir
accept-reject cri-
teria but not appli-
cable - new proced-
ures required
o Qualification test-
ing performed to
determine recurring
failures for correc-
tive action | only | | o Company standards
book | o Constant failure rate assumed | o Field MTBF 60% of predicted | o 78) used when possible, otherwise tests search for failure modes o Handbook possible on specific system basis only | | | a 781 not used - new
procedures required | standards | o field performance
failure data used to
maintain reliability
growth | | And the second s | o Not enough field
service time for
comparison | | ### SUMMARY OF RESPONSE TO QUESTIONNAIRE ON RE | ODE | SYSTEM | COMPONENTS | MANAGEMENT
PROGRAM | PREDICTION | FMEA | STRESS ANALYSIS | 188 | |-----|--|---|---|---|--|---|---| | 13. | Armored vehicles,
anti-tenk guided
missiles, artillery | | louint uo Lettabilith | o Reliability values
are furnished by con-
tractor for use in
operational research
type analysis | | | 1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00 | | 14. | MX Second Stage,
Polaris, Minuteman | Nozzie, flex seel,
thrust vector actua-
tor, etc. | w 765 often used but
needs tailoring to
delete "electronics"
requirements
o System lovel fail-
ure rates established
for contractual
requirements
o Flight reliability
verified based on
experiencing zero
cribical failures | contract requirement
o Stress/strength
calculations, design
margin requirements | o Used to interfore reliability with design for savly problem identification. later used to quantify failure modes | | o In-heused in | | 15. | Trailers for Ground
Launched Cruise
Missile | Trailer-lift actuator | o 785 not used but
applicable
o Requirements based
on mission success
probability by opera-
tional environment
and maintainability
requirements | o 756 not satisfactory - Implies expo-
nential distribution | | | o 781 n
ment
o Accepteria e
per 781
o Yest
reduced
of 1.5-
operati
bility | | 16. | | and nonelectronic | o Normally has reliability guarantees which impose free consignment spares, "no cost" redusign and retrofit until guarantee is met o MIL-STO-785 not used | o Priur product data
in same operational
environment is by far
the best source | jaritical components | | | | 1 | Solid fuel propulsion system, graphite composite structures | insulators, nozzleś, igniters, etc. | o Numerical requirements based on missission success probability by operational environment and production processes; reliability control by qualification test and reliability growth monitoring with incentives o MIL-570-785 not yest | o 756 not used o Prediction is ex- cellent quantitative audit of engineering design o Detailed probabil- istic analyses per- formed to avaluate predicted reliability | o Internal procedures used | o Used for predic-
tions
or finite element
analysis performed
at part level | o Testa
verify
charact
reliabl
perform | | | Missile control systems | | o 785 not used but applicable and cost effective o Requirements based on mission success probability; reliability control by qualification test and reliability | o 756 satisfactory
but predictions have
minimal effectiveness | o Not cost effective
at any level but used
in every design
effort per 1629 | | o 781 m
appropr | # ON RELIABILITY PROGRAMS FOR NONELECTRONIC DESIGNS | TEST PROGRAM | ACCELERATED TESTING | AELYABILITY GROWTH | PARTS SELECTION | FAILURE RATE
DISTRIBUTION | ANALYSIS/TEST/FIELD-
USE CORRELATIONS | MISCELLANEOUS
COMMENTS | |---
---|--|--|--|---
--| | | | | | | itic in comparison to i | | | o in-house standards
used in lide of 781 | lextormes used to | o Used to monitor
reliability progress
and identify problem
components | o Use standards
manual per AFR 73-1
and SAMSO | | in stand-by opera-
tional mode of miss-
iles | o Handbook should
provide easy way to
tailor requirements
and documents
o Matrix should be
developed to identi-
fy requirements
versus program phase | | o 781 needs improve-
ment o Accept/reject cri-
teria established
per 7810 o Test results
reduced by a factor
of 1,5-7 to predict
operational relia-
bility | | And the second of o | | | | | | | | o Monitored by in-
service operational
reliability reports
from users (Airlines) | mechanical engineer-
 ing maintain a non-
 electronics approved | | o After approximately
3 years of agressive
reliability growth
analytical results
are exceeded in
service by 20-50% | | | verify no wearout | are very costly as | | o internal standard-
ized parts program | o Binomial used for
testing "one-shot"
devices | o Number of tests too
small for comparison | o Government direc-
tivas just generate
"paper work" for
reporting purposes
o Sufficient infor-
mation from in-house
data for reliability
analysis - no hand-
book needed | | o 781 not used, not appropriate | o kone performed | | | | | o Sufficient infor-
mation does not
exist for reliabili-
ty analysis for non-
electronic designs | | | o In-house standards used in lieu of 781 | o In-house standards used in live of 781 dentify agr-sensitive materials a 781 needs improvement o Accept/reject criteria established pur 7810 o Test results reduced by a factor of 1.5-7 to predict operational reliability billity a 781 needs improvement o Accept/reject criteria established pur 7810 or Test results reduced by a factor of 1.5-7 to predict operational reliability a 781 needs improvement o Tests performed to a Used where tests are very costly as with rocket motors per internal procedures a 781 needs improvement o Accept/reject criteria established pur 7810 or Tests performed to a Used where tests are very costly as with rocket motors per internal procedures | o In-house standards o Temperature externes used to identify age-sensitive materials o 781 needs improvement o Accept/reject.crieria extablished pur 781c o Text results reduced by a factor of 1.5-7 to predict operational reliability o Tests performed to verify no wearout characteristics - no resilability tests per internal procedures o 781 not used, not o None performed | o In-house standards of Temperature suscenses used in lieu of 781 meds improvement of Accept/reject criteria established por 781 of Temperature and SAMSO an | a 781 needs Improvement to Accelerative extendency of the section | a In-house standards as Temperature used in live of 7dl standards in standard used in live of 7dl standards in standards and standards in standard in standards in standards in standards in standards in standard in standards in standard | ### SUMMARY OF RESPONSE TO QUESTIONNAIRE ON | RESPONSE | SYSTEM | COMPONENTS | MANAGEMENT
PROGRAM | PREDICTION | FMEA | STRESS ANALYSIS | 3 | |----------|--|---|---|--|---|--|---------------------------------| | 19. | Ground jammer rader systom, modular | | o 785 used and effec-
tive depending on
application
o Numerical require-
ments specified in
terms of system level
failure rate and
mission success
probability; relia-
bility control by
qualification test | o Useful at component
to system level on a
parts count basis and
application environ- | o Not performed
o Cost effective from
line replaceable unit
to system levol
o Piece part FMEA
useful for critical
areas | o Performed per 217
o May not be cost
effective for non-
electronic designs | 0.32 0.28 0.5 | | 20. | Battle tanks, generator sets, fuel systems | Pumps and other com-
ponents constituting
referenced systems | o 785 applicable and cost effective o Numerical requirements specified in terms of system level failure rate and mission success probability; control by qualification tests and RIW with incentives | o 756 not satisfactory o Predictions used for life cycle and logistics support costs and spares requirements | | | O ST | | 21. | Earthmoving and con-
struction equipment | | o 785 not used, no comment on application o Reliability requirements specified in terms of system level failure rate; reliability control by growth monitoring | | | | | | 22. | Radar systems, dis-
plays, communication
systems | Antennas, pedestals, motors, gyros, brushes, etc. | o 785 not used - not applicable for non-electronic equipment - electronics oriented o Numerical requirements specified in terms of system level failure rate and mission success probability; reliability control by qualification (est | o 756 not usaful
o Corporate field
data used for predic-
tion | p Not performed | | or
el
or
re
o
to | | 23. | Structures, pneumat-
ics, hydraulics,
mechanisms | Metallic and composite structures, valves, drive s, stems, regulators, etc. | o 78b applicable and cost effective but not used o Numerical requirements specified in terms of system level failure rate o Analyses and tests used to demonstrate reliability for small quantity programs | | o Excellent to compo-
nent level
o Performed on every
major design effort
to support system
safety in accordance
with ARP-926 | | o
no | | 24. | Ground launched
cruise missile | Launch control center | o 785 used sparingly,
needs considerable
modification
o Requirements based
mainly on availabil-
ity and dorman_y
o Money spent on re-
liability programs
depends upon HQ pres-
sure or when things
fall apart | | o Should be integra-
ted with system safe-
ty program and LSA | | O ati | ## STIONNAIRE ON RELIABILITY PROGRAMS FOR NONELECTRONIC DESIGNS | : | | | | | | | | |---|--|--|---|---|------------------------------------|--|--| | STRESS ANALYSIS O Purformed per 217 | TEST PROGRAM | ACCELERATED TESTING | RELIABILITY GROWTH | PARTS SELECTION | FAILURE RATE
DISTRIBUTION | ANALYSIS/TEST/FIELD- | MISCELLANEOUS
CUMMENTS | | o Parformed per 217 n o May not be cost effective for non- electronic designs | o 781C used and appropriate - needs | o Not performed
o May not be cost | o Not performed
o May not be
cost
effective | | rate assumed | o Analysis to field | o High risk/short
time test plans per
78] used for small
sample sizes | | | o 781 used o For Small sample sizes - ask for all samples possible within budget restraints | | | o M1L-STD-965 used | | | | | | | o Full scale testing
performed to deter-
mine fatigue life | o Used to ensure
requirements are met
o Needed to devermine
if first production
machine has reazon-
able reliability | | | o Good if field
stresses and cycles
are accurately
defined | o Final reliability
improvement occurs
after field data
collected and
corrective action
taken | | | o 781 used but not appropriate for non- electronic equipment - new mechanically oriented procedures required to monitor reliability growth | o Accelerated temper-
ature tests performed | | o In-house standard-
ized mechanical parts
listing | o Constant failure
rate assumed | o Reasonable field
correlation dependent
on apphistication and
training of operating
personnel | grams requiring | | | o /81 appropriate but
not used | | | | | | o Reliability pro-
grams budgeted by
percent of project
cost
o DID's of excellent
value | | | o 781C not appropriate-need now document with normal and Welbull distributions o Specified environment and catimate of service use profite developed | 1 | | o Internal procedures
used
o Significant lack of
standardization | 1 | o Insufficient field
usage data available
to correlate results | grams not as well | ## SUMMARY OF RESPONSE TO QUESTIONNAIRE ON RELIABI | RESPONSE
CODE | SYSTEM | COMPUNENTS | MANAGEMENT
PROGRAM | PREDICTION | FNEA | STRESS AMALYSIS | TEST | |------------------|----------------------------|---|--|---|---|--|--| | 25. | Tanks, aircraft,
trucks | Guns, missiles, etc. | o 705 not used
o Humarical require-
ments specified in
Cerms of system level
failure rote and
mission success
probability | | | | o fixed to plans used sample sto burden straight to approved mode o Besic 9 AR 702-3 | | 26. | Sonobuoys | Preumatically
activated flotation
equipment | of 78% tailored to specific need to specific need to Test results used for reliability improvement purpose: - main thrust of reliability program is contribution to design effort | o 756 ton old and provides no date of Predictions are a good reliability monitor of design evolution o Non-electronic espects of electronic system are usually a small contribution to total failure rate | ļ | o Reliance on engi-
neuring analysis
of yield strength
margins and safety | o 781 use
phasis pli
product if
rather the
ics
o All sam
terminate
design us
pensate f
statistic trinty of
trinty of | | 27. | Personal computers | Keyboards, floppy
disk drives, win-
chester disk drives | o 785 applicable but not used - similar internal procedures used Reliability requirements driven by Competitive products and customer service needs; reliability control by qualification test and growth monitoring | o 786 not used o In-house data pro- vides greatest utility o Field failure rate predicted to be 2:1 over laboratory tests | o Not performed | , | o 781 use
modified
rules-int
cedures u
o Tusts to
pected cu
usage of
o 781 nee
appropris
plans | | 78. | | Radar structures,
aircraft structural
addifications for
alectronic equipment | o 785 used but only partially applicable o Numerical requirement specified in terms of system level failure rate and mission success probability; reliability control by qualification test | | | | o 781 usa
appropri
nonelecti
ment | | 29. | Aircraft towbars | Structural portions of fire control pads | o 785 not used but applicable o Reliability program requirements depen on the program and what type of incentives dictated by reliability engineer | b 756 used, applica-
ble
o Field failure rate
predicted to be
4-7:1 over labora-
tory tests | o Performed on most
programs | | o Production to ensure it liability XVIII G (o For held failure button o For sal sizes Ch | | 30. | Aircraft control systems | | o 785 not used - no
comment on its
application
D Numerical require-
ments specified in
terms of system level
failure rate and
safety factors | o Prediction based
mainly on service
reports | o Performed in event
of unexpected cata-
strophic failure and
when required by
contract | 1 | confide
o 781 m
o Operat
ronmenta
establi | | 58 | <u> </u> | | <u> </u> | | <u></u> | <u> </u> | 7 | The same of sa ## TIONNAIRE ON RELIABILITY PROGRAMS FOR NONELECTRONIC DESIGNS | i
hi | . | 1 | 1 | i |) I | [FAILURE RATE] | ANALYSIS/TEST/FIELD-I | NISCELLANEOUS | |---------------------|---|---|--|--|--|--|--|---| | #
X: | STRESS ANALYSIS | TEST PROGRAM o Fixed length test | ACCELERATED TESTING | RELIABILITY CROWTH | PARTS SELECTION | DISTRIBUTION o Constant failure | USE CORRELATIONS | CONVENTS
o Test results in- | | | } | plans used for small
sample sizes | | | | rate assumed | | clude usage of re-
placement parts,
special tools, manual | | をおける 大田 とうこうしょう ままり | | o Hardware items
always tested to an
approved operational
mode | | | | | | als and maint. time
for cost of owner-
ship predictions | | | 1 1 | o Basic guidence per
AR 702-3 | | | | | | o Operator/maintain-
er error needs more;
investigation-often
escalates cost of
ownership | | ** | neering analysis
of yield strength
margins and safety | phasis placed on product improvement | o Performed only
when normal usage/
testing fails to
precipitate failures | | | | variables in the re-
cording of failures
(relevancy, account-
ability and other
extenuating circum-
stances) to achieve
worthwhile data or
any kind of correla-
tion | o Qualification testing good for important "first alent" of trouble and should be recogi- nized as such o Mission/logistics reliability often contractually re- quired with little guidance | | S) 415 | | tests | o llead for -u/-b | | o [mn]amented by | o Constant failure | | o Reliability allo- | | | | modified procedures/ | o Used for printer products at compo-
nent level | | components engineer-
ing group | rate assumed only
because nonelectron-
ic equipment tested | too contradictory to to draw conclusions | cated by % of total budget to satisfy the newd to be | | ř
ř
k | | o Tests based on ex-
pected custumer
usage or equipment | | |] | is part of primarily electronic system | | competitive | | | | o 781 needs more
appropriate test
plans | | | | | | | | | | o 70: used but not
apprepriate for
nonelectronic equip-
ment | υ Not performed | | , | tion depends on type
of test and equip-
ment design | o Analysis to field
results optimistic
by 2-5:1
o Test results to
field results opti-
mistic by 2-4:1 | | | | | | | | | | | | | 1 | | o Production verifi-
cation testing to
ensure inherent re-
liability per 781C
XVIII C performed | | | | | | | | i. | | o For nonelectronics,
781 needs revised
failure rate distri-
bution | | | | | | | | | | o For small sample
sizes Chi-square 50%
confidence used | | | | | | | | nt
nd | | o 781 not used | | o Fatigue test re-
sults, i.e. crack
initiation and
growth rates, re-
flected in inspec-
tion program | o Procedures used
for highly streezed
and critical parts | assume Wetbull, log
normal, normal | o Analysis to field
results correlation
poor due to unpre-
dicted failure modes
or nonrecognition of
dependence | | | | | | | | | | | | ## SUMMARY OF RESPONSE TO QUESTIONNAIRE ON | SPONSE
DE | SYSTEM | COMPONENTS | MANAGEMENT
Program | PREDICTION | FNEA | STRESS/AMALYS IS | |--------------|--|--|--
--|---|--| | 31. | Guns, tanks, earth
moving equipment | Engines, transmiss-
ions, gun tubes,
pumps | - 785 used but needs extensive modifica- tion - different qualification tests geared towards non- electronic equipment o Numerical require- ments in terms of system level failure rates and mission success probability | o 75% unsatisfactory
o Government data
banks useful to
agree upon cortract-
ual requirements but
need improvement | o Performed where
known problems exist
or if required under
contract | o Effective - over-
stress one major
Lource of problems | | 32. | | Airframe bearings | o Not involved with
reliability program
requirements | o 3-H and flight
test data used | | | | 33. | Propulsion systems,
kinetic energy
systems | Accelgrometers,
motors, gears,
springs, bearings,
flywheels | o Numerical requirements specified in terms of system level failure rates and safety o 785 not used but applicable | o 756 used, satis-
factory | o Performed in accordance with 1629 | o Effective for
critical parts only
o NASTRAN analysis
usud | | 34. | Electromechanical
production line
equipment | Miscellaneous elec-
tromuchanical compo-
nents and arming/
fuzing devices | o 785 used, applicable o Requirements established in terms of mission success probability; reliability control by growth monitoring | o 75% unsatisfactory | o Performed only if contractually required | o Probabilistic
stress/strength
techniques used | | 35. | | Actuators, gear
boxes, transmissions,
hoists, winches | U 785 not used but applicable o Numerical requirements specified in terms of system level failure rates and safety; reliability control by growth monitoring | o 756 used for quali-
tative prediction
o Predictions may be
cost effective depen-
ding on accuracy/
detail of prediction | quired by contract
according to 1629 or | o NASTRAN analysis
used | | 36. | Helicopters, weapon
subsystems, rotor
subsystems | | o 785 not used - use
tailored specifica-
tions to satisfy
mission need: of
major components
o Requirements/goals
based mainly on sys-
tem MTBR and safety
o 785 not applicable
to development pro-
grams | | o Absolutely needed
and should be used
throughout develop-
ment and into field-
ing | | the region of the company positions and the company of ### TIONNAIRE ON RELIABILITY PROGRAMS FOR NONELECTRONIC DESIGNS | STRESS ANALYSIS | TEST PROGRAM | ACCELERATED TESTING | RELIABILITY GROWTH | PARTS SELECTION | FAILURE RATE | ANALYSIS/TEST/FIELD- | MISCELLANEOUS COMMENTS | |--|--|--|--|-----------------------------|--|--|--| | o Effective - over-
stress one major
source of problems | o 781 used
o Quelification
testing needed -
otherwise reliability
is a guess | o Not effective | o Started out as
simple Management
tool-has become too
mathematically com-
plex-should return
to Adam and Eve stage | o Left up to design-
ers | o Constant feilure
rate assumed usually | o Wide dispersion
between analyses,
lab tests and field | n Reliability requirements usually are a compromise between customer wants and state of the art | | | o Test plans tailored
to include environ-
ment; based on past
experience
o Laboratory tests
used to guide selec-
tion of parts for
best performance | | | | o Weibull or normal | | o Prefer sample
sizes of at least 6
to obtain 810 life | | o Effective for
critical parts only
o NASTRAN analysis
used | o 781 not appropriate
- now procedures need
TAAF growth test | | o Will be getting
more use and become
cost effective as
experience is gained | | d Constant failure
rate assumed | | | | o Probabilistic
stress/strength
techniques used | o 781 not used o Accept/reject cri- teria established from FMECA | | o Raliability growth
monitored by testing | | o Constant failure
rate assumed | o Prediction opti-
mistic over test and
field results - tests
provide a pessimistic
assessment of opera-
tional experiences | | | O NASTRAN analysis
used | able, but needs
improvement - elimi-
nate burn-in, temper- | o May precipitate
failures that would
never occur in normal
service
o Overspeed/over-
torque tests per-
formed | o Reliability growth
monitored by Ouane
plots | | o Constant failure
rate assumed
o Use Chi-square
distribution to
establish quantita-
tive reliability | o Field MTBF exceeded
prediction and test
results | | | | sidered unsatisfac-
tory for nonelec- | o Procedures designed
by contractors not
well enough defined
but considered abso-
lutely necessary | o Not peformed o Olfficult to measure because of numerous design changes after first production run | | o Constant failure
rate assumed | o Field results much
worse than predicted | o Trying to inte-
grate reliability
program as part of
design team effort
o Better Du0 control
of field reliability
data is required
o Need a detailed
study of weight re-
duction effects on
system reliability | ### SUMMARY OF RESPONSE TO QUESTIONNAIRE ON REL | RESPONSE | SYSTEM | COMPONENTS | MANAGENE HT
PROGRAM | PREDICTION | FHEA | STRESS ANALYSIS | | |----------|--|--|---|---|---|---|--| | 37. | Pregumatic systems | | o 785 not applicable to fluid power; use ANSI and HFPA methods to Total system reliability, safety and repairability spacified for development program; reliability control by qualification test and RIW | | a Not performed | | to ne | | 36. | Radar system pedes-
tals, reflectors,
water cvolers, air
conditioners | trains, bearings,
gyros, gauges | applicable D Numerical require- | o Inadequate data
available for effec-
tive prediction | in event of unexpec-
ted catastrophic
failure
o Effective on any
type equipment | o Designers perform a computerized stress analysis o Very effective as a design and reliability tool but reliability know how is not always available | o 701 (app11 | | 39. | Solid rocket motors | | applicable | cility compared with requirements | design effort | o Strength and
stress distributions
compared at lowest
level which has data
available | 商业以下市以前 | | 40. | Air Defense Missile
System | Launchers, power
generators, air con-
ditioners, vehicles,
handling equipment | specified in terms | o Predictions usually
not valid - data does
not fit actual oper-
ating field condit-
ions | o 1629 contractually
required | | o 781 m
o Tests
identify
predict
tions
o Relia
ing use
design
predict
ic prod | | 41. | Automatic and manual
lubrication systems | Thermistors, pumps, gauges, meter units, hydraulic components | tion used
o Reliability speci- | Specific | | n Metallurgical
stress tests per-
formed on all metal
parts | o Field
is the
to test
their of
form
a Accept
teria b
confirm
establi | | 42. | o Power generation,
transmission and
distribution equip-
ment and systems | Generators, turbines,
boilers, pumps,
motors, etc. | o Developed own reliability stand-
ards based on 785 o Reliability speci-
fied in terms of
system level feilure
rate; reliability
tontrol by RIW and
penalties for reduced
reliability | most applicable for | | | o 781 n
- new pr
required | ### MNAIRE ON RELIABILITY PROGRAMS FOR NONELECTRONIC DESIGNS | 1
 | · | | | 1 | I FARIUME GATE | ANALYSIS/TEST/FIELD-I | MISCELLAMEOUS ! | |--
---|--|--|-------------------------------------|------------------------------------|---|---| | MESS AWAL 1515 | TEST PROGRAM | | RELIABILITY GROWTH | PARTS SELECTION | FAILURE RATE
DISTRIBUTION | USE CORRELATIONS | COMMENTS | | | o 781 not applicable
ta numelectronic
equipment especially
at system level | | o Product Problem
Raports program used | | | | o Military standards
are often written on
items they should
not and in an un-
necessarily restric-
tive manner | | diguers perform
imputerized
his analysis
by effective as
mism and relia-
ity tool but re-
sility know how
int always avail-
by | o YBl used but not applicable | not fully proven | o Duane model used to incorporate test results into revised growth projection o When tied in with a test-analyze-fix program it could be effective | o PPSL "DISC" con-
trolled parts | rate assumed for | o insufficient field
service data for
nonelectronic items | | | greneth and
less distributions
pared at lowest
11 which has gata
11able | o Success/failure
data evaluated by
maximum likelihood
computer program | o Good on lower in-
denture levels - may
be misleading on
upper levels
o Tests performed at
elevated temperatures | o Requirements speci-
fied by customer | | stant failure rate | gond correlation | o Probabilistic
stress/strength
analysis is the most
effective method to
estimate reliability
-should receive more
emphasis | | | o 781 not applicable o fests usually identify errors in prediction assumptions o Reliability testing used to influence design not field prydictions - periodic production tests performed | step-stress and test-
to-failure for cri-
tical hardware | o Growth is tracked
but not usually valid
for prediction
u Threshold values
at specified program
review points
established | | o Constant failure
rate assumed | o Correlations have
not been good - can
be very misleading | | | es tests per-
led on all metal
es | o field performance is the only method to test products and their ability to perform o Accept/reject criteria based on 95% confirmation to established standards | only to prove dura- | o Growth requirements
specified and meas-
ured by comparison
to previous models
under exact condit-
ions | | o Constant failure
rate assumed | | o Only the govern-
ment generates its
own terms and speci-
fications which tend
to be excessive end
costly
o Manufacturers
should be required
to specify equipment
reliability and then
be responsible
through warranty
program | | | new procedures required | o No accelerated
tosts performed -
can't always associ-
ate stress of test
with level of accel-
erated life | | | | o Prediction results
are optimistic with
respect to test
results | , , , , , , , , , , , , , , , , , , , | 2_ ### SUMMARY OF RESPONSE TO QUESTIONNAIRE | RESPONSE
CODE | SYSTEM | COMPONENTS | MANAGEMENT
PROGRAM | PREDICTION | PNEA | STRESS AMALYS 14 | |------------------|--|---|--|---|---|---| | 43. | Aircraft systems and equipment, power plants, structures | | o 785 used as speci- | o When 3-M data is
unavailable, contrac-
tor predictions are
used | o Performed as part
of every design
effort | | | 44. | Solenote and air operated directional air control valves | Instrumentation in-
cluded in referenced
systems | o Developed own standards o 100% check on all finished products o Roving inspectors monitor machine assembly operations o Reliability control by qualification test and RIW | o Use own lab test
results | | o Performed on all
components on an e
going basis in
accordance with inviternal procedures | | 48. | Automobiles, trucks,
engines, pumps,
gearboxes | Shafts, gears, bear-
ings, housings etc. | o Reliability requirements established in terms of system level failure rate and mission success probability; reliability control by qualification test and growth monitoring o 785 not used, but applicable | | o Performed as part
of some design
efforts or in event
of unexpected cata-
strophic failure | | | 46. | Tectical generator
sets | des turbine engines,
control systems | o 785 used; cost effective with careful application and judgment o Reliability requirements established in terms of system level failure rate and mission success probability; reliability control by qualification test | o Use contractor
and commercially
available methods
for bearings, gears,
etc. | | o Uses finito els-
ment, thermal and
mechanical analysis,
at component level | | 47. | | Generators and other
components which
support communica-
tions systems | | o 756 satisfactory
o Predictions based
on similar types of
equipment | | o 217 used at black box level | | 48. | Transit equipment and systems | | or used directly but
some basic tenants
can/should be consid-
ered and used for all
equipment programs
o Reliability re-
quirements estab-
lished in terms of | usually not well
defined
o Predictions often
derived and based on
similar types of
equipment | o Limited value -
often performed too
early or with inade-
quate operational and
environmental know-
ledge | | ### IONNAIRE ON RELIABILITY PROGRAMS FOR NONELECTRONIC DESIGNS | STRESS ANALYSIS | TEST PROGRAM | ACCELERATED TESTING | RELIABILITY GROWTH | PARTS SELECTION | FAILURE RATE
DISTRIBUTION | ANALYSIS/TEST/FIELD-
USE CORRELATIONS | COMMENTS | |--|--|---|---|--|--|--|--| | | | | | | | | o ILS programs meed
to be used to mini-
mise duplication | | Performed on all
Imponents on an on-
sing basis in
scordance with in-
graal procedures | standards
o Qualification tests
based on number of
cycles performed | o Performed on all
assemblies - some-
times in conjunction
with life tests to
establish life
guarantee and to
detect potential
failure modes | | | | o Good correlation
between test results
and field use | | | | | o for small sample
sizes accelerated
tests are essential
and very effective | | | u Normally assume
Weibull distribution
for testing | | | | Uses finite cin-
ent, thermal and
schanical analysis
t component level | o 781 applicable -
no changes required
o Must meet specific
numerical require-
ments in qualifica-
tion tests | | o Not currently used
in programs - proba-
bly should be | | | | | | 217 used at black
by level | o Accept/reject cri-
teria based on MfBF
during 60 day field
test or in eccordance
with 781C
o 781 needs tests
other than exponen-
tial | | | • | o Constant failure
rate assumed | o Correlation between
reliability predic-
tions and test
results is good as
long as initial pre-
diction is updated | | | | | a Difficult to see exact relationship to increased level of "stress" on non-electronic equipment or Performs accelerated accumulation of duty cycles, often not at an accelerated level of stress | | o "Previous Transit
Qualified" (i.e., a
type of QPL) being
established for many
large components | | o Correlations very
poor - too many vari-
ables and question-
able prediction
techniques | | 2- ## SUMMARY OF RESPONSE TO QUESTIONNAIRE ON RELIABIL | ESPONSE
ODE | SYSTEM | COMPONENTS | HANAGEMENT
PROGRAM | PREDICTION | FNEA | STRESS AMALYSIS | TEST P | |----------------|---
--|--|--|--|---|--| | 49. | Tendem rotor helicop-
ters | | o 785 Not Head but
applicable
o Requirements/goals
derived from expected
level of improvement
in removal rates over | o Block diagrams,
allocations and pre-
dictions used for
reliability analysis
o Maintenance opera-
tional adjustment | | | o 781 not a company of God 1 set se | | 50. | Optics, RCS systems | Fasteners, RCS com-
ponents | ness depends on cost of program and cri- | adequate failure mode
ratios | design effort at all | , | o 781 not to nonelect equipment test plans o Test result to evaluate bility and based on teand failure | | 51. | Tactical aircraft,
missiles/launch
vehicles | Hydraulics, turbo-
fan engines, gas
generators | | o Low effectiveness-
prediction factors
not well understood | o Performed only if
called out in con-
tract - moderate
effectiveness | o Used effectively
to form a basis -
then modify and
adjust from test
experience | o 7818 used
o Wear-out
in endurance | | 52. | Missile control
systems, rocket
engines, fuzes,
launchers, etc. | Valves, pumps, struc-
tures, motors, bear-
ings, actuators, etc. | isidered not appli- | o 756 unsatisfactory- recommend RADC Note- book and MIL-STD-XXX Reliability Stress Analysis (Oraft) o Useful to determine if requirements can be met and if and where improvements are necessary | o Uses bottom up "hardware approach" per task 101 para- graph 3.1 of 1629A o Should be done early to identify major problem areas— otherwise not effec- tive | o Most cost effec-
tive method for im-
proving nonelectron-
ic reliability-must
be approached on a
strength vs. stress
basis | o 781 ont us appropriate; o Qualificat are mandato; uncover prob missed by an methods o Perform pt reliability at tion tests | | 53. | Aircraft, munitions, missiles | Landing gear, air-
frame, engines,
rocket motors | o 785 not used but applicable o Reliability requirements not established at this facility; reliability growth models and mission success models used for evaluation of requirements | o RADC Notebook used | o Required in the development process to identify early corrective actions and reduce overall failure rates | | o 781 not us
o Grawth mad
dated with
results vs.
tion | | 72 | Liquid rocket propul-
sion (engines),
Marine propulsion
(fans and pumps) | Yalvos, nozzlet, gas
generators, injec-
tors, etc. | o 785 used and applicable when tailored to eliminate those specific requirement that are unique to electronic equipment o Reliability specified in terms of life/durability requirements; reliability control by growtl monitoring with incentives/penalties | tool for supporting conceptual and de-
stailed design efforts if the predictions are based upon "hard" data from similar products | at all levels if it is performed in con- | o Mecessary design requirement but not normally applied effectively - most designs are to specified margins with no correlation to numerical reliability requirements | o Very few i require test demonstrate, termined rel due to cost ations | ### **MIRE ON RELIABILITY PROGRAMS FOR NONELECTRONIC DESIGNS** | S ANALYSIS | TEST PROGRAM | ACCELERATED TESTING | RELIABILITY GROWTH | PARTS SELECTION | FAILURE RATE
DISTRIBUTION | ANALYSIS/TEST/FIELD-
USE CORRELATIONS | MISCELLANEOUS
COMMENTS | |--|---|---|--|---|---|--|---| | | o 781 nut appropriate o Goals set by analy- sis force pursuit of an agressive TAAF program in field to meet goals | o Overtorque and
uvertemperature tests
used on specific
components - K
factors used to
predict reliability | | | o Constant failure rate assumed | | o Poisson table used
for accept/meject
criterion and risk
factors | | | o 781 not appropriate to nonelectronic equipment - Weibuil test plans needed o Test results used to evaluate reliability and confidence based on test time and failures | | | | o For small sample
sizes - binomial for
specimen reliability
requirements-Meibul
for specimen test
time requirements | | o Safety margins
established through
probabilistic
stress/atrength
methods
o Failure mode in-
formation is notori-
ously inadequate | | effectively
M a basis -
Bodify and
infrom test
ence | o 7818 used
o Weer-out examined
in endurance testing | | | n A central driving
force for perts
standardization is
needed | o Contant failure rate assumed | o Poor numerical
correlations - quali-
tative aspects of
prediction may be
more useful | o Error from con-
stant failure rate
assumptions signifi-
cantly less than
errors caused by
date translation,
small sample sizes,
etc. | | cost effec-
method for im-
ig nonelectron-
lability-must
Poached on a
ith vs. stress | missed by analytical methods | phase
o Method for acceler-
ated to real time
conversion is needed
o Arrhenius relation- | development program o AMSAA or similar | o Use published designers handbook (approved parts list) o Large design variance between mechanical equipment - standardization must be based on common ality | o Plot results on
Weibull paper to
check for increasing
wear-out type failure
when assuming con-
stant failure rate | o Math model relia-
bility predictions
+ 2% of field test
Tesults after matur-
ity | o Nonelectronic
equipment failures
in field can often
be traced to im-
proper stress/
strength analysis
in design | | | o 781 not used
o Growth model up-
dated with test
results vs. predic-
tion | o Needs to be par-
formed on munition
systems that spend
the majority of their
life in the durmant
state | o Used to determine
the expected impact
of reliability on
the total system
maturity | | o
Constant failure rate assumed | o Good correlations if reliability is evaluated under correct field con- ditions | | | saary design
ement but not
ty applied
tvely - most
a are to
ded margins
to correlation
perical relia-
y requirements | o Very faw items
require testing to
demonstrate a prede-
termined reliability
due to cost consider-
ations | ment reliability | o Cumulative failures vs. cumulative test experience is a very powerful tool for nonelectronic equipments o Monitoring of reliability growth rates is an "absolute must do" to support program decisions | | o Constant failure
rate assumed | o Very good analysis/
field system level
correlation | o Probabilistic design methods should be encouraged when weight is a problem o Reliability speci- fications for large vs. smell rockets should be handled differently due to high cost of testing higher thrust devices | ### SUMMARY OF RESPONSE TO QUESTIONNAIRE ON | RESPONSE
CODE | SYSTEM | COMPONENTS | MA NAGEMENT
PROGRAM | PREDICTION | FMEA | STRESS ANALYSIS | | |------------------|---|--|---|---|--|--|---------------| | 65. | Air compressors,
pumps, cluthes,
engines, controllable
pitch propellers | Valves, bearings and
other components for
referenced systems | o 785 applicable o Computer modeling used to determine top lavel reliability requirements o Reliability growth monitoring used to ensure requirements are met | o 786 unsatisfactory
o TIGER computer pro-
gram identifies cri-
tical equipments
where railability
improvement would be
most cost effective | o Performed only if required under contract per 1829 o Effective in identifying equipments with high probability of failure | | - 326-50 F | | 56. | Afroraft subsystems | Nonelectronic air-
craft equipment | o 785 applicable o Reliability pro- grams contain similar task elements to 785 and are tailored to specific program o Reliability re- quirements estab- lished in terms of system level failure rates with extensive use of math models | o Provides assurance of meeting specified reliability requirements and tracking achievement as the program develops | o Used for early determination of failure modes and evaluation of their criticelity to facilitate timely revisions o internal procedures correlate closely to 1629 | .1 | 388° 823° 936 | | 57. | Generators, air con-
ditioning units,
printers, etc. | Switches, relays,
gears, motors, etc. | o 786 not used but considered applicable o Reliability requirements established in terms of system level failure rates and mission success probability; reliability control by qualification test and growth monitoring | o 756 not adequate for mostly mechanical systems o Cost effective if accepte part level failure rates are evailable o Specifying numerical reliability to nonelectronic equipments should be discontinued | o Performed if
required by contract
per 1629
o Cost affective for
mission critical
failures
o Top down (fault
tree) on critical
items unly | o Very cost effec-
tive at part lavel | 0 0 3 5 4 | | 58. | Fuel systems, power
trains, suspensions | Sensors, hydrautics,
automotive controls | o 785 used and applicable o Reliability requirements estab-
lished in terms of system level failure rates and mission success probability; reliability control by growth monitoring | o 756 not satisfac-
tory
o internally con-
trolled test data
base used for non-
electronic components | o Not effective - use
only if required by
contract per 1629 and
ARP-926 | | 0.00 | | 59. | Navy and Air Force
aircraft, hydrofoil,
gun-boats, windmills,
solar hot water
heaters | | o 765 used and applicable of Reliability requirements established in terms of system level failure rates and mission success probability of Many requirements have reliability demonstration requirements and limited RIW. | | | | | | 60. | | flight instruments, sensors, gyros | o Tasks tailored for
each program similar
to 785
o Requirements estab-
lished in terms of
MTBF | O 755 not satisfactory O K-Factors from past experience used to adjust lab tests to field reliability predictions O GIDEP and internal experience used for failure ratus | o Performed unly on
safety related
equipments
o Necessary but
difficult to assign
failure modes and
distributions to
piece parts | enterior programme | 0 0 0 0 E | # TIONNAIRE ON RELIABILITY PROGRAMS FOR NONELECTRONIC DESIGNS The second secon | STRESS ANALYSIS | TEST PROGRAM | ACCELERATED TESTING | RELIABILITY GROWTH | PARTS SELECTION | FAILURE RATE
DISTRIBUTION | ANALYSIS/TEST/FIELD-1
USE_CORRELATIONS | MISCELILANEOUS
CONNENTS | |--------------------|--|---|--|---|--|--|---| | | o 781 used but not appropriate o Test results used to update computer program o Maintainability demonstration tusts give MTTR data | | o Used to ensure the
tup level require-
ments of the ship are
met during develop-
ment and construc-
tion phase | | rate assumed | predictions have
matched fleet per-
formance of sampled
equipment | o A handbook is
needed which approa-
ches reliability
analysis from a
mechanical design
viewpoint where
stress analysis is
included | | | n New 781 procedures naded with test conditions for non- electronic compo- ments such as hydraulis actuators and control valves o Factors are applied to lab tests to account for the pro- posed use environment | | achieved reliability | Selection List is developed by internal | o During flight test:
MTBF's are calculated
and assumed to follow
constant failure rate | | o Component opera-
tional and logistics
reliability predic-
tions are used in
models to determine
system mission and
logistics reliabili-
ty then compared to
reliability require-
ments/goals | | Alve at part level | o 781 not appropriate o fest results are used to recalculate cumulative and in- stantanuous M78F | temperature, tumpera-
ture cycling and | the Duane model | o Use a series of
standard parts
manuals | o Constant failure
rate assumed | o Good prediction,
test, field use
correlations for
mature systems | o In development of ground radar systems nonelectronic parts represented lo% of predicted failure rate but 80% of actual failure rate due to lack of reliability attention to nonelectronic litems | |)
1 | v Not feasible to
Adjust lab test
results to estimate
field culiability | | o Growth requirements
specified and
measured by Duane
model | | o Constant failure rate assumed | o Good correlation
between test, pradic-
tion and field use
results | | | | e /81 applicable and used for testing o Previous experience and operational ratios determined from lab testing used to adjust lab to field reliability | basis only | | | o Constant failure
rate assumed, how-
ever, have tracking
growth models | o "Rule of thumb" -
testiny 3% better
than field perform-
ance | o For small sample sizes, cost effic-
tiveness based on
failure impact
determines number
of test samples
o Achievement of re-
liability for non-
electronic duvices
requires a standard-
ization program | | | o Reliability demon-
stration/evaluation
tests used to ensure | | field data | O Use company pre-
ferred standard parts
list | o Gonstant Failure
rate assumed | o Good correlations
when based on past
field performance
data | o Uses series model
for logistics sup-
port, mission relia-
bility block diagram
for mission require-
ments | despects the same transcription of the property of the second constitution of the second second second second ### SUMMARY OF RESPONSE TO QUESTIONNAIRE ON RELIA | SPONSE | SYSTEM | COMPONENTS | MANAGEMENT
PROBRAM | PREDICTION | PHEA | STRESS ANALYSIS | TEST | |--------|--|---------------------------|---
--|---|--|--| | | | enced mystems | based on component MTBF warranties of Probability studies of dispatching an airplane on time performed o Qualification tests, reliability growth monitoring and RIW used to ensure requirements are mat | effectiveness are
dominant ractors
o Mostly actors
data bank of commer-
cial airplanes | o Used as a prelude
to system probability
analyses at component
level to obtain a
safaty perspective
o Eypecially needed
for new technology or
critical (safaty or
operational) systems | | o Develop
profiles
hours, tel
vibration
necessari-
these pro | | 62. | J | phase change
materials | some tailoring
o Nonelectronic
reliability is only | o 756 is obsolete for
everything
o 217 should devote
more research to low
population/high fail-
ure rate parts | lo Very effective be-
cause mechanical
parts are subject to
wear | | o Qualiff
have some
are extre | | | Aircraft/missile
flight controls and
medicanical systems,
rail transit vehicle
systems | | o Reliability re-
quirements estab-
lished in terms of
system level failure
races, mission
success probability
and safety; relia-
bility control by
growth monitoring
and TIW with incen-
tives and penalties | o Questionable 'sch-
nical value except
for evaluation of
relative merits of
two design proposals | o Most valuable
analysis available
o Safety oriented
analysis performed | o '3eful for elec-
tronics and basic
structures if
apriled environment
are accurately know
o Not very effectiv
at detailed compo-
nent level due to
poor environmental
data | n cycle | | 1 | dide range of elec-
tronic/eletro-
mechanical systems | | o 785 not applicable o Reliability re-
quirements estab-
lished in terms of system level failure rates o Parts specified by derating and quality part level | o 756 unsatisfactory | o Useful for qualitative safety analyses | - o Effective for uni
and component struc
tural and moving
perts | t o Test re-
to establ
tive acti | | | Hilitary transport
aircraft | Ì | p 785 used, applica-
ble o Temperature, press-
ure, vibration,
humidity usage pro-
files established
for aircraft-mission
success probabilities
and failure rate
requirements
established | o Needed for trade/
cost benefit studies
o Based on histori-
cal, AFR 66-1, Nay
3-M and commercial
airline data | o Single most impor-
tant reliability
analysis tool - per-
formed on most desig
efforts
o Uses SAE ARP-926 | | o Qualifi
routinely
to monite
ty growth | | | Hydraulic and elec-
trical turret and
antenna controls | | o Tailoring aspects
of 785 make it
applicable to any
program and all types
of equipment
o Reliability
requirements estab-
lished in terms of
failure rate and
mission success
probability | O Of very limited
value - sum of fail-
ure rates and relia-
bility models are
used | | models used | a 781 "ef-
testing"
priate -
required
tract-new
required
o Test re
periodica
to verify
original | ### INNAIRE ON RELIABILITY PROGRAMS FOR NONELECTRONIC DESIGNS | TRESS ANALYSIS | TEST PROGRAM | ACCELERATED TESTING | RELIABILITY GROWTH | PARTS SELECTION | FAILURE RATE
DISTRIBUTION | ANALYSIS/TEST/FIELD-
USE CORRELATIONS | MISCELLANEOUS
CONMENTS | |--|---|---|--|--|---|---|---| | | o Davelop overational profiles (cycles, hours, temperature, vibration) but do not necessarily test to these profiles | | o Usually in terms
of airplane dispatch
reliability growth | | | | o Reliability prob-
lem stems from the
lack of failure
data, not method-
ology | | A Company of the Comp | o Qualification tests
have some merit but
are extremely costly | question is always | | | | | o Recommends - nvern-
ment use "all equip-
ment reliability
test concept" -
costs more but oro-
vides better results | | accurately known | o Qualification test-
ing of little value
since undertaken too
late in development
cycle o Sample sizes for
development tests
based on budget and
engineering judgement | o Valuable if it can
be performed on a
representative arti-
cle and unvironments
are accurately known | | o Heart of problem is
the wide variety of
Mechanical devices
with unique applica-
tions - not sure if
they can be standard-
ized in generic
groups/families | | | | | | o Test results used
to establish correc-
tive actions | o Effective for com-
nonent and system
moving parts | | | | 5 by 2 5 c | | | Mportant for com-
ent/equipment
ign assurance | o Qualification tests
routinely required
to monitor reliabili-
ty growth | because of uncortain- | o Growth curves
specified by customer
and proposed to by
the contractor | o A standard parts
manual is maintained
with approved fast-
eners, switches,
relays, lights, etc. | o Exponential distri-
bution considered
satisfactory | | o Too many variables
exist to expect to
cover them in one
handbook | | erst case stress
emmined for crit-
i items at part
al - fatigue
ein used | o 781 "after the fact testing" is inappropriate - used only if required under contract-new procedures required o Test results are periodically reviewed to verify if the original assumptions still hold: | of assembly practical | | | o 756 satisfactory -
exponential assump-
tion generally has
little error
o Baysian statistics
used for small sample
sizes | o field MTBF much
lower than predicted | o Recommends Baysian
statistical tech-
niques to reduce
test time
o Moving part prob-
lems usually design
or lot workmenship
created | 2 ### SUMMARY OF RESPONSE TO QUESTIONNAIRE ON | RESPONSE | SYSTEM | COMPONENTS | MANAGEMENT
Program | PREDICTION | FMEA | STRESS AHALYSIS | | |----------|--|--
---|--|---|---|--| | | trol, flight control, | referenced systems | o Individual system/
LRU reliability re-
quirements based on
operational impact
requirements for
modifications based
on economic payback | o Usas MSG-2/MSG-3
analysis logic for
reliability analysis | o Used in qualitative
way to support MSG
and develop initial
maintenance plan | o For structures use
residual strength
crack propagation
rate | | | 68. | vehicles, wheeled | iońs, axles, etc. | o Judicious applica-
tion of 785 is cost
effective
o Reliability re-
quirements based on
durability life for
major subsystems and
MTBMA | o 756 uzeless
o Mostly ineffective
due to lack of good
techniques and data | o Very effective at
all levels if per-
formed by designers
with reliability/
maintainability
personnel monitoring
effort
o 1629 used | o Effective if per-
formed probabilisti-
cally but nut enough
people know how and
do it | | | 1 | systems, office
copiers, sonobuoy
receiver systems | Gyros, copier com-
ponento such as paper
feeders, document
handlers, photorecep-
tors, sorters, etc. | o 785 not used but applicable o Reliability requirements established in terms of system level failure rate; reliability control by qualification test, growth monitoring and RIW | o Duane growth model and Weibull analysis used o Predictions should be superseded by the "fix effectiveness" methodology once hard data becomes availa- ble through TAAF efforts | o Effective in prior-
itizing areas with
high effect/securr-
ence impact at system
level | on piece parts com-
pared with calcula- | | | | plants, compressor | Valves, pumps,
filters, fittings,
etc. | o NASA NHB 5300.4 used for reliability programs: requirements ucveloped in terms of safety and margin type testing o Analyses are qualitative and used to evaluate risk or do tradeoff comparisons | o No opinion - not
popular for one-of-
a-kind, extrems
environment items | o Excellent at all
levels for all types
of equipment | o Handatory in
almost all cases | | | | Mide range of tele-
Communications equip-
ment | | o Most 785 tasks are applicable to both electronic and non-electronic systems of Reliability requirements established in terms of mission success probability and failure rate; qualification tests and growth monitoring used to ensure requirements | | o Effective but high
in cost | | | | 72, | Hydraulic actuators,
fluidic amplifiers,
logic devices | Flow makers, tempera-
ture sensors | o 785 used but con-
sidered not cost
effective for non-
electronic units | o Design/material
improvement is easy
to see without wast-
ing time and money
on woubtful numbers | | | | The same of sa ### STIONNAIRE ON RELIABILITY PROGRAMS FOR NONELECTRONIC DESIGNS | STRESS ANALYSIS o for structures use residual strength crack propagation rate | | ures, fatigue, and
ultimate yield | RELIABILITY GROWTH o Rate of unscheduled removal versus hours are used and projec- ted for next calendar year | | FAILURE RATE DISTRIBUTION O Assume constant failure rate distri- bution for complex units 2/3 of time | ANALYSIS/TEST/FIELD-
USE CORRELATIONS O Reliability pre-
dictions seldom
account for in-
service exposuré to
accidental environ-
ment severity | MISCELLANEOUS
COMMENTS | |--|---|--|--|---|--|--|---| | formed probabilisti-
cally but not enough | based on durability
life requirements and
confidence desired; | insufficient correla-
tion of test results
to nominal operation-
al performance | data against growth | | o Exponential distri-
bution assumed for
reliability, gener-
ally binomial for
durability failure
rate
o Kolmegov-Smirnov
tests check validity
of assumed failure
rates | widely due to test/
field conditions and
human factors | o Major breakthrough
or fresh approach
needed to improve
mechanical reliabil-
ity
o Que to variety in
application factors
a successful data
base and/or relia-
bility prediction
method does not
exist | | o Imposed stresses
on piece parts com-
pared with calcula-
ted safety margins | and applicable if
tailored to mechani-
cal systems
u Sample sizes hased
on cost considura-
tions | o Very good if
applied early in sub-
system test/analyze
phase to probe for
weaknesses
o Safety margins for
critical environments
are determined by
overstress testing | | o Critical parts are
subject to lot samp-
ling control to
specified LTPD, AOQL
numerics | | o field results
demonstrate higher
reliability than in-
house test and
analysis results | o A handbook is
possible to provide
methodology and data
but methods should
be empirical and
easy to apply | | o Mandatory in
almost all cases | used to ensure reli- | o Use only when other
methods/information
not available | | | | | o Reliability pro-
gram centered on
FMEA's on critical
subsystems and risk
assessment | | | o 781 not appropriate
- new procedures
required | | | | o Constant failure
rate assumed | o Poor field data
for comparison | o Mechanical components of systems are treated as electronic in application of 785 and 781 | | | o 781 used
o Items tosted until
a life-cime of flying
hours are accumulated
in a simulated flight
provide distribution | | | | o Constant failure
rate assumed | o Experience shows
failure rates are
2-10 times higher
than predicted | o Contractors judge
interpretation of
rules (relevant vs
nonrelevant fail-
ures) to pass a
demonstration test
o Sample size is
dollar limited | ### SUMMARY OF RESPONSE TO QUESTIONNAIRE ON RELIA | SPONSE | SYSTEM | COMPONENTS | MANAGEMENT
FROGRAM | PREDICTION | FNEA | STRESS ANALYSIS | TEST P | |--------|---|---|--|---|--|--|---| | | | eurbines, valves | | o Used for prelimi-
nary design objec-
tives
o Relatively low
impact on product
reliability | o Performed if under
contract per 1629 at
system level | o Effectiveness limited to safety sensitive component: | 3 | | 10 | ulsion and control [| ind pedestals,
olpring, thermal
dissipators | requirements estab-
lished in terms of
service life, failure
rates and mission | o Insufficient data-
field service data
is not returned to
design or reliability
engineers
o AF 66-1 and Navy
3-M do not provide
datailed data on
nonelectronic items | o Current FMEA pro-
cedures do not
address fracture
mechanics or continu-
um mechanical failure
modes | o Because most ele-
ments are standard-
ized they are not
stress analyzed
after being used
with success | o 781 used
in system
o 781 need
distributi
testsing o
thermal/fa
analysis | | l p | lower distribution | dotors, meters, fans,
tables, film tracks,
temeras, switches,
relays | | o RADC Notebook and
217 used | | | o Accept/r
teria per | | | Hiscellaneous weapon
ystems | | o Emphasis at this
facility is on
the
manufacturing aspects
of industrial con-
tracts - 785 not used | Į. | o Only performed if
required under con-
tract | | o Accept/r
determined
of failure
number of | | 10 | mmunition, tank
Juns, artillery | baromutric sensing
devices, pneumatic
logic controls, etc. | o Reliability requirements are based on user mission needs and system life cycle requirements and specified in terms of MTBF at system and component levels o Quelification tests and growth monitoring used to assure re- | o Effective if in-
house data is availa-
ble | o Effective at higher
levels
o Performed only if
deemed beneficial to
particular contract | o Effective at part
level on metallic
items and plastics
o Computer analyses
used for mechanical
strength of piece
parts, e.g., finite
element analysis | environmen
profiles of
for compar
o Tests de
detect wee | | Į: | fide range of mili-
ary electronic
ystems | | quirements are met
o 785B is gradually
being phased into
development contracts | o Marginal effective
ness due to problems
in transferability of
historical data from
system to system | o Cost effective for
directing further
reliability analysis
and maintenance
planning | o Essential - espe-
cially for novel
designs or novel
applications of
exicting designs
o NASTRAN used on
some critical struc-
tural designs | | ### MIRE ON RELIABILITY PROGRAMS FOR NONELECTRONIC DESIGNS | MT A212 | TEST PROGRAM | ACCELERATED TESTING | RELIABILITY GROWTH | PARTS SELECTION | FAILURE RATE
DISTRIBUTION | ANALYSIS/TEST/FIELD-
USE CORRELATIONS | MISCELLANEOUS
COMMENTS | |--|---|--|---|----------------------------------|---|--|---| | mess
safety
emponents | | | o Incorporated in
proposed programs at
system level and for
major components | o'Use standard parts
manual | | | o 785 good-presents
standard tasks to be
selectively tailored | | est ele-
tandard-
re not
yzed
used
is | o 781 used only with-
in system context
o 781 needs Weibull
distribution based
testsing coupled with
adequate stress/
thermal/fatigue
analysis | | o Not performed for
nonelectronics | o Only by federal
part number | o Constant failure
rate assumed | | o 785 sketchy since
it does not include
analytical and
experimental back-
ground in mechanical
reliability
o RADC NPRD used
extensively | | the Carlotte of the control of | o Accept/reject cri-
teria per 781 | o Perform increased
temperature And
vibration tests | | o Use TCT PPSL-5G | o Constant failure
rate assumed -
mechanical components
are not a major part
of systems | o Field performance
of a complex system
that meets BON of
reliability predic-
tion or testing is
considered good | o When only small
sample sizes avail-
able use fixed
length test plans;
testing approximate-
ly 3X the minimum
MTBF | | | o Accept/reject
datermined by number
of failures per
number of hours | | | | o Constant failure
rate assumed | o Reliability predic-
tions are better than
actual performance
o Test MTBF close to
field MTBF | o A warranty provis-
ion would be best in
785
o Add 781 test to
increase cycling and
temperature extremes
for springs, valves
and linkages | | at part
fallic
jastics
analyses
chanical
piece
finite
lysis | o Functional and environmental mission profiles developed for components o Tests designed to detect wearout - rarely test to failure | o Effective only for
corrosion, overstress
metal strength test-
ing and the like | able growth curve, | | | o Due to sparse data
in meager or non-
existing data banks,
predictions are use-
less - tests are
reality
o Good correlations
obtained between test
results and field
performance | o System level fault
tree analysts useful
for preliminary
information | | espe-
ovel
of
igns
ed on
istruc- | | o Effective for new
designs, especially
at component 'evel
and early in the life
cycle | O Useful management
technique for complex
systems-umphasize
TAAF | | o Constant failure
rate assumed | | | ### SUMMARY OF RESPONSE TO QUESTIONNAIRE ON RELIA | RESPONSE
CODE | SYSTEM | COMPONENTS | Management
Program | PREDICTION . | FNEA | STRESS ANALYSIS | TEST | |------------------|--|---|--|---|---|---|--| | 79. | Ruder systems | Synchros, mators | o 785 used and applicable | | o Performed in ac-
cordance with 1629 | | o 781 used
applicable
layrovamen | | 80. | Ammunition production
lines, conveyors, air
logic controllers,
fluidics, packaging
lines | Piece parts for referenced systems | techniques, etc.
are generally app-
licable across the
board | o 756 satisfactory o Uses computer simulation of pro- duction lines o Data from previous tests used to deter- mine spares require- ments and logistic support costs | o Performed if con-
fidence in a design
needs to be improved | o Effective only for
critical applications
o Uses mechanical
strength type
analysis | o 781 used
bls, and it
fit indivi-
sample siz
from econs
erations
o Equipmen
a demonstr
or manufed
feits remained
portion of
already pa | | 81. | Ground support equipment for space shuttle | Regulators, valves,
transdµcers, motors,
etc. | o 785 Not used; uses
GP 863 or JSC SM-E-
0002 | | o Performed per KSC-STD-118(D) o Cost effective for identifying critical components or failure paints | | o 781 not:
o Test pro
designed t
expected e
environmen | | 82. | Navy soner, fire
control, whapons,
launcher systems | Components unique
to listed systems | o 785 used and applicable if tell-ored to address load, environment, stress analysis and derating of Reliability requirements established in terms of failure rates, specified life/cycles and availability | o 756 satisfactory
but of limited value
o NAVSEA "TIGER"
program used for
simulatora and
assessment | o Performed per 1629 | o Static and dynamic
analyses including
NASTRAN used | o 781
uses
approprial
procedures
quired ins
dynamic as
complex % | | 83. | Vehicles, landing
craft | | o 785 adopted to programs - applicable with tailoring o Reliability requirements established in terms of system level Yallure rate; qualification and growth monitoring used to ensure that requirements are met | | o Maximum benefit
for complex systems | | o 781 appi
required
for compli | | 34. | Mechanical equipment
used in space craft | Gyros, slip rings,
bearings, springs,
valves | o 788 not used but applicable when tail-ored to specific hardware o Internal documents similar to 785 are used to ensure subcontractor compliance o Requirements based on mission life and mission success probability | normally limited data
is available; not
very cost effective | o Performs a product
design FMEA which
also includes a re-
view of processes
and materials
o A matrix form FMEA
is used - very
effective | o Required to iso-
late potential
design problems -
very cost effective | n 781 not to space of test prideveloped mission mand inclustaneous pland environmental of the company co | ### ONNAIRE ON RELIABILITY PROGRAMS FOR NONELECTRONIC DESIGNS to the state of th | STRESS ANALYSIS | TEST PROGRAM | ACCELERATED TESTING | RELIABILITY GROWTH | PARTS SELECTION | FAILURE RATE
DISTRIBUTION | ANALYSIS/TEST/FIELD-
USE CORRELATIONS | MISCELLANEOUS
COMMENTS | |---|--|---|---|---|---|--|--| | | o 781 used and
applicable but needs
improvement | | | | o Constant failure
rate assumed | | | | | | | | | | | | | Entical applications Uses mechanical Etrength type malysis | o 781 used, applica-
hle, and tailured to
fit individual test -
sample sizes derived
from economic consid-
erations
o Equipment must pass
a demonstration test
or manufacturer for-
fetts remaining
portion of funds not
already paid | | o Growth projections
are not revised
during development
program unless a
major requirements
change has occurred | | | correlates satisfac- | o Expanded effort
for nonelectronic
data base is needed | | | o 781 not used
o Test procedures are
designed to duplicate
expected operational/
environmental profile | | | o Uses GP-864 which
is a listing of parts
with past usage
experience | | | o A handbook with
application examples
would be helpful in
combining into one
series of documents
the different pro-
cedures currently
used | | Static and dynamic
malyses including
MASTRAN used | procedures are re- | o Performed - effec-
tive where results
are clearly trans-
latable | o Tailored TAAF for
maturing equipment
used, especially
during early deploy-
ment and for high
reliability systems | o Parts solection
procedures are unique
to each design con-
tract; parts may be
standard, preferred,
tpecially screened,
etc. | o Distribution is defined by data base | | o Handbook should
stress trade-off of
derating versus
risks
o Data base for
repair/human error
poor | | | | o Not effective -
too difficult to
extrapolate | | | o Constant failure
rate assumed | | | | Required to iso-
ate potential
usign problems -
bry cost effective | o 781 not applicable to space usage o Test procedures are developed from mission requirements and include simulataneous performance and environmental profiles if possible o Emphasis is placed on meeting system level requirement | | | o Parts selection
is limited to an
"Approved Parts
List" containing
only parts which
are qualified and
have a known failure
rate | o Constant failure
rate normally
assumed - Metbull
considered in some
cases | o Most problems are
not "random" failures
but are design prob-
lems, i.e. very poor
correlations | | A property Apples and ### SUMMARY OF RESPONSE TO QUESTIONNAIRE ON RELIABILIT | RESPONSE | 1 | 1 | MANAGEMENT | . 1 | <u>.</u> | 1 | l | |----------|---|---|--|---|---|---|--| | CODE | SYSTEM | COMPONENTS | PROGRAM | PREDICTION | FMEA | STRESS ANALYSIS | TEST PROGRA | | 85. | Missile steering
hydraulic and warm
gas subsystems | Gas/hydraulic units | o Design reviews,
qualification test-
ing and accelerated
testing are the areas
to concentrate re- | applicable p Predictions used to determine spares requirements; locat- | o Selectively applied
to mission critical
subsystems, compo-
nents or parts | o performed on safety critical hardware at the part leval with statistical emphasis (probabilistic analysis) | designed to det
metal or insula
degradation whi | | 86. | | Refrigeration com-
pressors, condensers,
evaporators, valves,
switches, etc. | o Reliability program
invoked only when
specifically required
by contract
o 785 applicable,
tailored to fit each
contract | base-may have to be | o Performed during
initial design in
accordance with MIL-
STD-1543 | o Computer programs
used for frame
structural stress
analysis
o Stress analysis
results compared
with safety factor
desired - redesign
to reach desired
safety margins | o 781 not used
famal reliabili
testing not per | | 87. | All aircraft systams | All associated com-
ponents purchased
from subcontractors
and suppliers | o 785 used and applicable o Reliability requirements specified in terms of MTBUR and mission success probability; suppliers must supply free spares until requirements are met | o 756 used and satis-
factory o Uses fielded pro-
duct data of company
and competitor pro-
ducts o Predictions neces-
sary for trade
studies and system
evaluation | o Performed as part of every design effort in accordance with internal procedures compatible with ARP-925 and 1629A o Currently the most cost effective technique available for design analysis at all levels | | o 781 not used
not
applicable
(proposed) is
reasonable star
needs much more | | 88. | and commercial air=
craft | Push-pull cable assemblies, rolling friction control assemblies, rack and pinion gear boxes | o 785 applicable o Reliability requirements speci- fied in terms of system level failure rate; qualification tests and RIW used to ensure requirements are met | o 756 not satisfac-
tory - reliability
predictions not
performed | o Petormed only if
required under con-
tract
o Limited number of
detail parts permits
analysis of every
part in assembly -
very cost effective | | o Operational/
ronmental prof-
established prof-
testing usually
accordance with
o Equipment per
ance requirement
must be met the
out and at com-
of simulated li-
testing | | 69. | Aircraft systems | | o 785 used and appli-
cable o Reliability requirements estab-
lished in terms of MTBF or MTBMA; re-
liability growth monitoring used to ensure requirements are met | o 756 not satisfec-
tory o Predictions are
optimistic and do not
include workmanship
or design deficien-
cies | | o Stress denoting
used to assure fail-
safe dealgn | o 781 approprised of the second secon | | 90. | Space and undersee
life support equip-
ment and hydraulic
rocket engines | Pumps, fans, motors,
valves, actuators,
batteries, etc. | o 785 used and empli-
cable o Reliability requirements estab-
lished in terms of
system level failure
rate, safety and
mission success
probability | D Predictions used to determine if requirements have been metchange design until goal is met via redundancy, component improvement, etc. | of every design
effort in accordance
with 1629 | o Cost effective and
generally a necess-
ity
o RADC Nonelectronic
Reliability Notabook
especially useful | o Qualification
used to ensure
Quirements are | | 78 | | | L | L | <u></u> | <u> </u> | | more and any water the man that the state of ### AIRE ON RELIABILITY PROGRAMS FOR NONELECTRONIC DESIGNS DATE STORY | ľ. | 1 | l | 1 | 1 | FAILURE RATE | ANALYSIS/TEST/FIELD- | | |--|--|---|-----------------------|---|--|--|---| | m statisti-
mis (proba- | TEST PROGRAM O Testing procedures designed to detect metal or insulation degradation which causes field loss; no statistics involved | ACCELERATED TESTING O Perform overload, extended limits and savare environment tests | RELIABILITY GROWTH | PARTS SELECTION | DISTRIBUTION | USE CORRELATIONS | COMMENTS O Sufficient information exists but is too widely scattered - a handbook would help o FMEA, Reliability Prediction and Stress Analysis are cost inaffective - often duplication of effort exists | | r programs
(frame
) stress
(analysis
empared
factor
(redesign
desired
argins | o 781 not used;
fomal reliability
testing not performed | | | o Design engineer,
in contact with po-
tential vendors,
specifies actual
parts to be used for
major compunents | | o Field performance
HTBF 2-3 times better
than analysis | o Yendor information is the most reliable source for predictions - when vendors will cooperate o Field information from the Armed Sarvices needs to be fed back to subcontractor level where it is needed | | | o 781 not used and
not applicable - 781D
(proposed) is a
reasonable start but
noeds much more work | | performance according | o Internal procedures
used by standards
group | o Constant failure
rate usually assumed | | o Primarily need
failure rate infor-
mation | | | o Operational/envi-
ronmental profiles
established prior to
testing usually in
accordance with 810
o Equipment perform-
ance requirements
must be met through-
out and at completion
of simulated life
testing | o Individua) acceler-
ated tests are tail-
ored to complete
tests in reasonable
time without produc-
ing detrimental
effects | | o All materials to
military or industri-
al specifications | | o Field reliability
well beyond predic-
tions - specified
environments ere not
indicative of actual
field usage | o A compilation of
the material typi-
cally used in deter-
mining reliability
would simplify the
task in firms not in
a position to estab-
lish reliability
departments | | assure fail-
ign | o 781 appropriate and used as a guide to modify tests for particular items o Economics and scheduling determine test samples o Bayasian methods used to establish reliability from test results | | | o Company preferred
parts manual | o Constant failure rate assumed | D Predictions are
generally optimistic
- dun't include work-
manship or design
deficiencies
o Test results/field
use correlations good
if all laboratory
failures (relevant
and nonrelevant) are
counted | | | | o 781 not used o Qualification thats used to ensure re- quirements are met | o Acceleration factor of cycle rate used which does not usually affect failure mechanism of Highly cost effective if acceleration parameters and factors are well established | i | o Fittings, fasten-
ers, etc. are selec-
ted from :tendard
parts list | o Constant failure
rate usually assumed | o Not enough field
experience recorded
to verify the very
high reliability
reduirements | | 2___ ### SUMMARY OF RESPONSE TO QUESTIONAIRE ON | RESPONSE
CODE | SYSTEM | COMPONENTS | MANAGEMENT
PROGRAM | PREDICTION | FNEA | STRESS ANALYSIS | |------------------|--|--|--|--|--|--| | 91, | HVAC | Pneumatic relays,
temperature trans-
mitters, controllers,
switches | o No experience with 785 | | o Not performed -
the uniqueness of
each system design
prevents FMEA from
being effective | | | 92. | Armament systems -
tenks, artillery,
mortar | Fuzes, explosive
trains, hydraulic
components | o 785 used, applicable o Reliability requirements estab- lished in terms of failure rate; quali- fication test and growth monituring used to ensure requirements are met | o 756 used, satisfactory to Worth the effort if done properly, but can be difficult for nonelectronic devices o Published data must be supported or modified by valid data from actual tests | 1 | | | 93, | Aircraft procurement
in general | | o 785 called out in
all programs
o 785 applicable,
cannot separate
electronic and non-
electronic | o 756 can be satis-
factory with tailor-
ing o Prediction is only
as good as the in-
itial data; need more
feedback into GIDEP
to verify reports | o Specified as part
of every design
affort; however,
requirement gets
deleted one-third of
the time | | | 94. | Radar antennas,
pedestals, gun sys-
tems, missile
launchers | | o 785 used, applicable o Reliability requirements estab- lished in terms of failure rate; incen- tives for meating numerical require- ments | o 756 used but not
satisfactory | | | | 95. | Sonars, missiles,
ships | pulsion units | specified by MTBF; | if used in conjunc-
tion with stress | o Performed as part
of every design
effort using 1629
with top down ap-
proach | o Mechanical and
thermal stress
analyses performed | | | | fire extinguisher
containers for air-
craft, pressure
gauges, pressure
vessels, pressure
switches, explosive
cartridge | o Reliability requirements speci- fied in terms of sys- tem level failure rates; control through testing to ments specific numeri- cal menuirements on | o Predictions provide
confidence the design
will meet contractual
obligation
o Published failure
data regulates inter- | tract | o Absolutely essen-
tial; starts at
piece part level
(fittings) for
pressure vessels | i 1.5 はいる ### TIONAIRE ON RELIABILITY PROGRAMS FOR NONELECTRONIC DESIGNS | These searches with a continued of the c | ř | | | | | | | | |
--|------------------------------|---|--|---|---|--|--------------|--|--| | December 1997 register of the properties testing performed in the performance of perf | | STRESS ANALYSIS | | ACCELERATED TESTING | RELIABILITY GROWTH | PARTS SELECTION | | | | | project where we are done not become a possible to be p | | | 781 o Laboratory reliability adjusted to field life by determining an acceleration factor based on previous testing of similar type products and usage en- | stress, and environ-
mental testing per-
formed o Most cost effective
method when analyzing
nonelectronic designs
where physical where
characteristics are
a determining factor | | component qualifica- | | | ify groups of pro-
ducts in similar
applications would | | Absolutely expending the activity of activ | ● Ellin Carlo Material Carlo | | prolate when wear does not become a factor o 781 needs improvement; more flexibility and consideration of nonconstant failure rate o Bayesian approaches used for small sample | conclusive - probab-
ly a waste of
resources | timate reliability
are made. Based on
planned reliability
growth tosts, mile-
stones are estab-
lished, Major tests
are conducted at
these milestones to | | rate assumed | usually optimistic in
comparison to field
performance testing;
often consistent with | | | applicable O Test under worst Operational and environmental con- ditions O 7AAF testing used O Mechanical and thermal stress analyses performed O Absolutely essential starts at procedures required O absolutely essential; starts at procedures retering to a constant failure rate assumed O Accelerated aging for leakage rate determination per- formed O Helpful if acceler- ation is meaningful in real world, e.g., hot and cold excur- sions of gravironment O TAAF testing used O Constant failure rate assumed reliability is pre- parts and assembles that hard | | | | | | | | formance is 1/3 to
1/2 of the predicted
rate
o Prediction and test
results are closely | expected operational environment | | thermal stress analyses performed appropriate - new procedures required or Laboratory test results divided by 2 to estimate field reliability D. Absolutely essential starts at piece part level (fittings) for content formed assemblies that have had qualification performed on Helpful if acceleration is meaningful in real world, e.g., hot and cold excursions of environment. The procedures required or the assumed ass | | | applicable o Test under worst operational and environmental con- ditions | | | o Company preferred
parts list | | | | | Itial; starts at for leakage rate determination per- per | - P | thermal stress
snalyses performed | appropriate - new
procedures required
o Laboratory test
results divided by
2 to estimate field | | | | | | | | 70 | | tial: starts at
piece part lovel
(fittings) for | | for leakage rate
determination per-
formed
o Helpful if acceler-
ation is muaningful
in real world, e.g.,
hot and cold excur-
sions of environment | | ware - parts and
assemblies that have
had qualification
tests on other pro- | rate assumed | | reliability is pre-
served during pro-
duction by scrupu-
lous attention to
tolerances |)<u> — </u> ### SUMMARY OF RESPONSE TO QUESTIONAIRE ON RELIA | MESPONSE
CODÉ | SYSTEM | COMPONENTS | MANAGEMEN* | FRICTION | FHEA | STRESS ANALYSIS | 30 | |------------------|--|--|--|---|--|---------------------|--| | 97. | Jet engines | Jet angine companents | o 785 used, applica-
ble
o Reliability
requirements estab- | PREDICTION o 756 unsatisfactory o Reliability predictions are strongly rooted in available data bases | o Performed and cost | | o 781 a should cover district Acceler Testing o Hissi perfore engine propere accumul | | 98. | | imechanisms, air
conditioners, hand
held power tools | cost effective when properly tailored; safety margins speci- | o Effective if based | o Performed only if
required by contract | } | o 781 m
appropri
o Teste
failure
cal to
adequate
margins | | 99. | Satellites | and assemblies | o Suspects 785 would need some rather violent tailoring/ modification oo Reliability requirements specified in terms of Mean Mission Duration and MIBF; reliability control by 100% sample tosting and on-orbit performance incentives | | | | o Qualif,
for sate
levels al
case pre | | I | | referenced systems | both electronic and
nonelectronic gear;
most control and
analysis tasks could
apply to any sort of
system | stress/strength
assumed distributions
is common model
o Reliability predic-
tion is often a func- | accordance with
ARP-926, MIL-STD-1643
and SAMSO-STD 77-2
for spacecraft depth | a Major method used | o 781 not
appropri | | | Solar panels, deploy-
ment mechanisms,
reaction control
systems, structures | valvēs, lines | o 785 used; applica-
ble and cost effec-
tive when appropri-
ately tailored
o Reliability re-
quirements specified
in terms of safety,
failure rates and
mission accomplish-
ment probability;
control by acceptance
tests and continuous
monitoring | | o Not performed | | o 781 not
appropria
o MiL-STD
posed in
box diagn
space crai
develop d
environmentiles | | | | Components of referenced systems | o MiL-STD-1843 used mostly for reliability program o Reliability requirements specified in terms of safety and identifi- | o Very good for elec-
tronic equipment with
prescribed quantifi-
able operating envi-
romments, less bene-
fit to nonelectronic,
cyclic, low usage
equipment | of every design
effort per 1543; very
cost effective to
identify where to
spend resources for
all types of equip- | | o 781 used
appropriat
o Extensive
cation tes
gram and
control use
ensure rei | ્યક્ષ્મિક | MALYSIS | TEST PROGRAM | ACCELERATED TESTING | API 1481 144 ARAUSU | 81876 PRIFEREN | FAILURE RATE | ANALYSIS/TEST/FIELD- | MISCELL ANEOUS |
--|--|---|---|-----------------------|---|---|---| | | o 781 not used; scope
should be expanded to
cover non-exponential
distributions and
Accelerated Mission
Testing | o Accelerated Mission
Testing for engine
hot section parts is
used to establish
durability
o Effective on dura-
bility limited parts | o Component improve- | PARTS SELECTION | lish quantitative
reliability | tween predictions and
test results are poor
due to difference in
data base engine and
test engine design,
maintenance and
environment | | | M. Comment of the Com | appropriate | duty cycle tests with | a Not effective un-
less item is vary
complicated | | o Non parametric,
Poisson, normal or
binomial distribution
assumed depending on
item | | o A set of manuals
would be necessary
for reliability pro-
grams for nomelec-
tronic designs | | | o Qualification tests
for satellites are at
levels above worst
case predicted | rates and elevated temperature tests | u Seldom performed;
not seen as germane
or productive for
une-of-a-kind or very
few of a kind items | | o Constant failure rate not assumed; curve unknown but distinctly non-linear both in qualification and acceptance test- | | o Proliferation of
standards tends to
create confusion not
precision
o System/subsystem
environments defined
by MIL-STD-1540A;
moving mechanical
assemblies per
DOD-A-83577A | | ective-
ne margins
pt
Nthod used | 0 781 not used, not appropriate | o Use accelerated
cycle rate
o Questionable
effectiveness - good
if simply accelerate
cycles, but often the
acceleration factors
are not known | o Satellite growth is
difficult to define
and especially to
measure due to few
items and long lives | | o Constant failure - rate assumed | o Major source of
problems is with
interpretation of
MTBF, MTBMA defini-
tion | o Handbook useful to
standardize saftey
factor terms and
stress/strength
margin analysis | | را المعارض من المعارض من من المعارض ال | o 781 not used, not appropriate o MIL-STD-1540 imposed in all black box diagrams for space craft use to develop operational/environmental profiles | o Not performed;
there has been no in-
depth correlation
between accelerated
and normal testing | o Growth requirements specified in ground/
air/sea user segments
but not in space
segments | | o Constant failure
rate assumed | o Analytical results
very conservative
compared to actual
field performance | o DID's effective;
identify exactly how
the contractor will
be monitored | | | o 781 used but not
appropriate
o Extensive qualifi-
cation testing pro-
gram and process
control used to
ensure rollability | | | | | o Nonelectronic equipment is sensitive to actual use invironment (weather neglect, poor mainte nance) versus design scharchos which adversoly effects analysis and field use correlations | · | 2 ### SUMMARY OF RESPONSE TO QUESTIONAIRE ON REL one of the a military lightly but a relabilities between the meson of | RESPONSE
CODE | SYSTEM | COMPONENTS | MANAGEMENT
PROGRAM | PREDICTION | FMEA | STRESS ANALYSIS | | |------------------|--|---|---|--|---|--|--| | 103. | Propulsion systems | Inertial guidance
components | o 785 used and applicable o Reliability requirements specified in terms of system level failure rates and mission accomplishment probability | o 756 used and
satisfactory
o Important and cost
effective at compo-
nent level for design
alternatives and as
comparison to other
similar systems
o 217C and GIDEP used | critical failures
that begin at compo-
nent level and propa- | o Cost effective;
can locate over-
stressed components
and should be coord-
inated with designer | o 70
memi
o Ai
seq
meni
test
cat | | 104. | Explosive ordnance,
emergency escape
systems, energy
transfer systems | | o 785 not used and
not applicable
o Reliability
requirements speci-
fied in terms of
mission accomplish-
ment probability;
controlled by quali-
fication tests to
meet specific numeri-
cal requirements | o 756 unsatisfactory | o Very useful;
performed if required
under contract | | o 70
ate
requ
o Li
tesi
rei | | 105. | matic systems, struc-
tures, mechanical
drives, flight con- | boxes, gas turbines,
regulators, mechani-
cal linkages, actua-
tors, structural
members, reservoirs | o 785 applicable and used; requirements tailored depending upon criticality, cost, state-of-the-art with 785 used as a shopping list | o 75% satisfactory o Good for ball park estimates and for determining the improvement required over existing items to meet reliability goals | o Performed as part
of every design
effort for comparing
reliabilities of
alternate system
designs or two compo-
nents and for
troubleshooting | o Very cost affac-
tive when operating
environments are
well defined and
results are verified
by test | o 74
not
leve
gute
envi
be t
are
high | | 106. | Process systems for
nuclear power
stations | Process system compo-
nents for nuclear
power stations | o 785 applicable and used indirectly o Reliability requirements specified in terms of safety, system level failure rates and mission accomplishment probability; controlled by qualification tests to meet a numerical requirement or not accepted | o 756 unsatisfactory | o Performed as part
of every design
erfort with 1829
tailored to nuclear
industry | o Stress/strength
reliability models
used for critical
items (earthquake
analysis) | | | 107. | Missiles | | o 785 can be cost effective with addi- tional specific requirements o
Reliability requirements speci- fied in terms of sys- tem level failure rates and mission accomplishment proba- bility; controlled by testing to meet nu- merical requirements | too sketchy to be of
any value, needs
revision to include
reliability block
diagrams and redun-
dancy and availa-
bility equations
o Useful for compar-
ing alternatives and | o Recommended as part
of every design
effort; purformed in
accordance with 1029
o Vital during design
phase to detect po-
tential problem sreas
and to permit remedi-
al design changes | design phase to
detect potential
problem areas and
permit remedial
design changes | O MIL
O retain
1 to a season
1 to a season
1 to a season | | 108. | Electromechanical
devices for spaco/
satellite applica-
tions such as nolar
array drive assem-
blies, gimbals,
antenna drive mecha-
nisms, etc. | Drive motors, slip-
rings, actuators | o 705 not used and
not applicable; not
an effective program
document
o Reliability re-
quirements specified
in terms of safety,
system level failure
rates and mission
accomplishment proba-
bility; controlled by
testing to meet nu-
merical requirements | o 756 satisfactory;
nonelectronic section
should be expanded | o Performed if required under contract per 1543 o Good means of quickly identifying components that are single point failures | design margins | O s 19
u se
gue
par |gardi U | :
 | | | | | | | | |--|--|---|---|--|--|---|--| | NAIRE ON R | ELIABILITY PRO | OGRAMS FOR N | ONELECTRONIC | C DESIGNS | | | | | TRESS ANALYSIS | TEST PHOGRAM | ACCELERATED TESTING | RELIABILITY GROWTH | PARTS SELECTION | FAILURE RATE DISTRIBUTION | ANALYSIS/TEST/FIELD- | MISCELLANEOUS (| | Dat effective;
locate over-
Dased components
Tahould be coord- | o 781 used, no com-
ment on application
o Amplitudes and
sequences of environ-
ments are given to
test labs for appli-
cation during test | o May or may not be
effective depending
on accuracy of simu-
lation
o Increased test time | o Reliability demon-
stration tests used
to monitor growth
o Cost effective if
there are many copies
of the same component | o PPSL books used | o Constant failure
rate assumed | o No experience with
inalysis to field
correlations; 3-4
years difference be-
tween design and
operations
or Test and field
correlation not good | | | | | o Used and effective occasionally | | o Selection and sur-
veillance rules
utilized | | o All correlations
inadequate | o The entire area of
single function
(onetime) systems is
inadequately
addressed | | ry cost effec-
immen operating
ronments are
idefined and
with are verified
test | not appropriate; test
levels are OK as
guidelines but actual
environments should
be known; test plans
are too lengthy for
high MIBF components | | o Helpful for projec-
ting expected relia-
bility to be attained
at future date; must
be accompanied by
TAAF | Lists utilized | | o Correlations not made; testing is to identify and fix problems o System level prodictions, tests, and field results appear to be close | o Failure reporting
systems with closed
loop corrective
actium required and
continuous produc-
tion line monitoring
used to monitor and
ensure reliability | | ress/strength
ability models
(for critical
a (earthquake
yess) | | | o Planned reliability
growth is not inclu-
ded in programs; if
failures occur thu
causes are studied
and a remedy
attempted | | | o In general, analysis and field result
correlate well, but
the human factor is
not always predicta-
ble | o A general recog-
s nized failure data
base of nonelectron
ic equipment would
be most useful;
similar to IEEE STD
500-1977 | | tal during
on phase to
t potential
om areas and
t remedial
on changes | o Recommend 781C and MIL-SID-202 O New procedures required for wear out items O Environmental Pi factors and Arrhenius equations used to estimate field reliability from laboratory test results | o Used where practi-
cal | o Duane plot util-
ized; straight line
on log-log paper | | o Wetbull distribu-
tion used for compo-
nents subject to
wearout | | o Mechanical relia-
bility failure rate
are at the level
electronic paris
were in 1960; sug-
gests trucking, air
line and food pro-
cessing firms must
have info on break-
down and repair
characteristics | | assary to
adequate
mainins | o 781 not used;
similar procedures
used for running
several life tests to
qualify nonelectronic
parts | | | o Restricted use of many materials by a thorough Materials List Roview | o Constant failure
rate assumed | o Sliprings perform
100 x better than
predicted industria
fallure rates | o Recommends award incentives for rel ability and qualit not just cost and schedule of Anandbook like 2170 is needed for nonelectronic compinent reliability predictions | | | | L | L | J | | | Q1 | ### SUMMARY OF RESPONSE TO QUESTIONAIRE ON RELIAN | RESPONSE | | 1 | I MANAGENENT | 1 | l . | 1 | | |----------|---|--|--|---|--|---|--| | CODE | SYSTEM Tracked military | COMPONENTS Track, road wheals, | PROGRAM
o 7858 used and | PREDICTION o 756 not generally | Performed if | STRESS ANALYSIS O Performed by | o 781 net | | 1000 | vehicle systems | roadwheel arms,
torsion bars, bear-
ings, hydraulic
valves, diesel
engines, mechanical
controls, trans-
missions, gear boxes | applicable o Reliability requirements are specified in terms of system level failure rates, mission accom- plishment and availa- bility; control by testing to meet numerical require- ments | used, not satisfac-
tory
o Prediction is
compared to the reli-
ability allocation
for differences; | required under con-
tract per 1629
o Useful to identify
reliability critical
components and safety
hazards - this affort
should be required | Design Engineerings
more stress analysis
should be performed | eppropri
procedure | | 110. | Missiles, spacecraft | Actuators, propulsion components, etc. | o 785 used and appli-
cable; adjustments
required to models,
testing and other
sub-disciplines
o Reliability re-
quirements are speci-
fied in terms of MTBF
and mission accom-
plishment probabili-
ty; control by test
to numerical require-
ments | used for approximate
constant failure
rates | o Performed as part
of every design
effort per 1629 and
reference SAE pro-
cedures | o Stress versus
strength analysis
effective for simp-
ler mechanisms | o 781 use
level;
as long ac
rate disti
is not ra
different,
stant over
life | | 111. | AMACS, generators | Switches, relays,
connectors, PCG's,
I.C. sockets, etc. | o 785 not used, not applicable o Reliability requirements specified in terms of system level failure rates and mission accomplishment probability | o 756 unsatisfactory | o Performed according
to customer's wishes | | | | 112, | Electo-mechanical
systems such as spin
systems, scan actua-
tors, linear drive
systems, spaceraft
orbital injection
modules | Pyrotechnically
actuated devices,
liquid propellant
devices, valves,
regulators | o 785 used o Reliability requirements speci- fied in terms of safety and redundancy to eliminate single point faflure proba- bility; control by test to meet numeri- cal requirements | | o Performed as part
of every design
effort; Fault Mode
failure Trees are
broken down on matrix
sheets which cross-
reference the preven-
tive measures to be
performed
| | o Extreme,
ments and a
testing ce
extrapolat
to adjust
results in
field reli | <u>L</u> | | | ### AIRE ON RELIABILITY PROGRAMS FOR NONELECTRONIC DESIGNS | S ANALYSIS | TEST PROGRAM | ACCELERATED TESTING | RELIABILITY GROWTH | PARTS SELECTION | FAILURE RATE
DISTRIBUTION | ANALYSIS/TEST/FIELD-
USE CORRELATIONS | MISCELLANEOUS
COMMENTS | |--|---|--|---|---|--|--|---| | ormed by
Engineering:
tress analysis
be performed | appropriate; new procedures required | o Not performed; not
enough is known about
the relationship
between accelerated | o Planned growth must | | o Weibull distribu-
tion assumed | actual field perform-
ance but prediction | has practically no | | is versus
h analysis
ve for simp-
thanisms | o 781 used at system
level; appropriate
as long as failure
rate distribution
is not radically
different from con-
stant over useful
life | o Useful for parem-
eters like fatigue
and wearout | o Performed on newer
systems; used only
for monitoring
purposes | | o Constant failure
rate assumed with
some exceptions | o Field performance
usually measured in
different terms than
predicted performance
- where this has been
unscrambled correla-
tion has been good | llack of an adequate | | limes useful;
ist effective
 Cific
 Some compo- | | o Unly cost effective
for specific trouble-
some components | O Use test results
(such as life test)
to develop relia-
bility growth curves | o No formalized parts
selection procedures;
this is an area of
particular weekness
throughout industry/
military | | | o A hendbook is
badly needed; the
RDH and other such
texts don't really
cover "nomelec-
tronics" | | trectly
ble unless
Bider Frac-
Chanics as an
ant | to addust lab tous | higher sceeds than | o Used only as appli-
cable through inher-
ent hardware design
improvement from past
projects | | o Constant failure
rate assumed in
margins testing | | | | | | | | | | | | | And the second s | | | | | | | | ### APPENDIX D GENERIC PRODUCT SUMMARY OF YES/NO RESPONSES TO QUESTIONNAIRE ON RELIABILITY PROGRAMS FOR NONELECTRONIC DESIGNS GENERIC PRODUCT SUMMARY OF YES/NO RESPONSES | 25 | | |---------|--| | 0 | | | ۵. | | | 7 | | | L. | | | | | | _ | | | ~ | | | ¥ | | | - | | | 운
!! | | | " | | | | | | ŧ | | | | | | | | | | | | | | | 0 | | | ≆ | | | | | | | | | | | | 11 | | | Q = 0 | | | =
0 | | | #
0 | | | = 0 | | | = 0 | | | 0 | | | 0 | | | 0 | | | 0 | | | YES 0 | | | YES 0 | | | 0 | | | = YES 0 | | | YES 0 | | | = YES 0 | | | = YES 0 | | | | 1. AIRCRAFT/FLIGHT CONTROL SYSTEMS | | | | | | | | | | | |-------------|---|-------------|------------|------------|----------|----------|----------|----------|--------------|-------------|----| | | Government/Industry (G/I) | I I | - | 1 1 | II | _ | | IIII | H | - | | | Question | ion Subject Respondee | 3 | او | ر –
اوو | ا
ا | 5 | 22 | အ | 2 | 8 | œ۱ | | 4a | Utilization of 785 | 0 | _ | 0 | 0 | 0 | _ | | | _ | | | ج | Requirements Similar to 785 Used | t | ı | 0 | ' | . | <u>'</u> | | 0 | 0 | | | Ω. | Mission vs. Logistics Reliability Considered | _ | _ | _ | _ | _ | | | | _ | | | <u> </u> | 785 Applicable to Nonelectronic Equipment | _ | • | _ | , | _ | | • | _ | - | | | 2 | 785 Cost Effective for Nonelectronic Equipment | _ | | • | • | | | • | _ | | | | 8 | Performed on Monelectronic Equipment | _ | _ | _ | _ | _ | | | _ | | | | 22 | Reliability Predictions Used to Monitor Design | | - | • | , | 0 | <u>'</u> | • | | _ | | | 24 | Overhaul/Maintenance Actions Included | , | 0 | ·
 | _ | _ | 0 | <u> </u> | _ | _ | | | 52 | 756 Satisfactory to Nonelectronic Equipment | • | 0 | | <u>'</u> | | | <u> </u> | , | 0 | | | 27a | MIL-HDBK-5 Used to Assess Reliability | 0 | 0 | -
0 | | • | '
- | _ | 1 | 0 | | | 27b | WIL-HDBK-5 Satisfactory for Material Properties | _ | ŧ | • | • | • | | •
` | 1 | 1 | | | 29 | | | _ | _ | _ | _ | | 0 | | _ | | | 32 | Internal Parts Selection Procedures Utilized | | 1 | 0 | _ | | _ | _ | _ | _ | | | 33 | Operational/Environmental Test Profiles Dev. | 0 | 0 | _ | _ | _ | 0 | _ | ١ | _ | | | 34 | Utilization of 781 | 0 | ی | _ | <u>'</u> | | _ | | ١ | - | | | 35 | Procedures Similar to 781 Used | 0 | ŧ | 0 | 0 | | | ا
- | 1 | 0 | | | 33 | Constant Failure Rate Assumed for Testing | 0 | • | _ | ר
ר | _ | _ | | 1 | _ | | | \$ | 781 Appropriate for Nonelectronic Equipment | 1 | 0 | _ | 0 | ا
~ | | '
- | ١ | - | | | 47 | Accelerated Testing Methods Utilized | 0 | 0 | • | _ | | | | 1 | 0 | | | 25 | Any Government Contracts Specify a RCM Program | ı | _ | • | • | _ | | 1 | 0 | | | | 53 | DID's Add to Effectiveness of Reliability Req. | ١ | , | | _ | _ | _ | | 0 | 0 | | | 7 | Lack of Standardization of Nonelectronic Parts | 1 | ı | _ | _ | | _ | _ | ı | • | | | 55 | Separate Rel. Specs. for Large and Small Items | ı | _ | _ | _ | | - | - | 0 | _ | | | 8 | Effort by Eng. Societies to Upgrade Rel. Specs. | 0 | 0 | • | _ | - | • | - | 0 | _ | | | 27 | Does Ruggedization Requirements Affect Rel. | • | , - | , | _ | | | _ | ł | _ | | | 28 | Monelectronic Info. Available for Rel. Analysis | • | 0 | • | , | Ξ. | | <u>.</u> | 1 | 1 | | | 28 6 | Handbook with Procedures/Guidance Possible | ; | _ | _ | _ | _ | | | ŀ | 1 | | | | | | | | | | | | | | | GENERIC PRODUCT SUPPLARY OF YES/NO RESPONSES | |] = YES 0 = NO - = | | ES | NO RESPONSE | نبا | | | | |-----------|---|----|------|---------------|-----------|---------------|--------------|----------------| | | 1. AIRCRAFT/FLIGHT CONTROL SYSTEMS | | | | | | TOTALS | | | | | | | | | | 0 | • | | | Government/Industry (G/I) | | 9 | 9 | 9 | 116 | 1 6 | 1 6 | | Question | tion Subject Respondee | 20 | 43 5 | <u>ي</u>
و | 111 | - | | - | | 4a | Utilization of 785 | ı | _ | 0 | 0 | 4 | 63 | | | 4 | Requirements Similar to 785 Used | ı | ŀ | | 0 | 0 | 4 | 7 3 | | 10 | Mission vs. Logistics Reliability Considered | _ | _ | _ | 1 | 94 | 2 0 | - 0 | | Ha | 785 Applicable to Monelectronic Equipment | ı | 1 | _ | 0 | 711 | | 33 | | 116 | 785 Cost Effective for Nonelectronic Equipment | • | 1 | , | • | 7 0 | <u>0</u> | 3 5 | | 8 | FMEA Performed on Nonelectronic Equipment | 0 | _ | 0 | _ | 1113 | 0 2 | 00 | | 22 | Reliability Predictions Used to Monitor Design | 0 | ı | | '
_ | 4 - | 5 | 2 3 | | 54 | Overhaul/Maintenance Actions Included | • | • | 1 | 0 | 8 | 3 2 | 0 3 | | 52 | 756 Satisfactory to Nonelectronic Equipment | ŧ | 1 | ŀ | 0 | 30 | 31 | 5 4 | | 27a | MIL-HDBK-5 Used to Assess Reliability | • | 0 | • | 0 | 0 1 | 7 3 | 3 2 | | 27b | MIL-HDBK-5 Satisfactory for Material Properties | 1 | 0 | | | 0 - | | 94 | | 82 | | ı | ı | | '
_ | 8 | 30 |
0 4 | | 32 | Internal Parts Selection Procedures Utilized | ı | ı | 0 | o
_ | 7 | 2 2 | 2 2 | | 33 | Operational/Environmental Test Profiles Dev. | ı | ı | _ | o | 7 | 3 | 13 | | * | Utilization of 781 | ı | ı | 0 | 0 | 6,4 | 3 | 4 2 | | 32 | Procedures Similar to 781 Used | ı | 1 | • | • | 3 | S 3 | 5 5 | | 99 | Constant Failure Rate Assumed for Testing | • | | | | <u>8</u> | <u>0</u> | 2 2 | | \$ | 781 Appropriate for Nonelectronic Equipment | 1 | ı | • | 1 | 20 | 0 4 | 5 5 | | 47 | Accelerated Testing Methods Utilized | ı | 1 | 1 | 0 | 200 | 4 2 | 2 3 | | 25 | Any Government Contracts Specify a RCM Program | | | | • | 4 2 | 3 0 | 4 3 | | 23 | DID's Add to Effectiveness of Reliability Req. | ŧ | ı | | p= | 7 | 2 0 | 2 4 | | Z, | | • | _ | • | r- | 6 2 | <u>0</u> | 53 | | 22 | Separate Rel. Specs. for Large and Small Items | , | 0 | , | ~ | 6.1 | 4 1 | 13 | | ፠ | Effort by Eng. Societies to Upgrade Rel. Specs. | ı | 0 | 1 | 0 | 30 | 7 3 | 1 2 | | 21 | Does Ruggedization Requirements Affect Rel. | • | , | , | • | 80 | <u>0</u> 0 | 3 | | 8 | Monelectronic Info. Available for Rel. Analysis | • | 1 | 1 | o
- | = | 3 | 73 | | 8 | Handbock with Procedures/Guidance Possible | ŧ | | 1 | _ | 19 | <u>-</u> | 4 4 | GENERIC PRODUCT SUMMARY OF YES/NO RESPONSES | S | |------------------------| | - | | 天 | | $\mathbf{\mathcal{L}}$ | | ο, | | S | | RESPONS | | ₹ | | _ | | _ | | 呈 | | 22 | | | | 11 | | ••• | | | | | | | | | | | | | | \sim | | 옾 | | - | | | | 11 | | | | 0 | | _ | | | | | | | | | | YES | | 7.1 | | _ | | _ | | | | - 11 | | | | _ | , | | | | | | | | | | | | | | | | |---|-----------------------------|-------------------------------------|--------------------|----------------------------------|--|---|---|--------------------------------------|--|---------------------------------------|--|----------------|---|--|--|--|--------------------|--------------------------------|---|---|--------------------------------------|--|--|--|--|----------------------------------|---------------|---|---| | | | 6
83 | ı | 1 | _ | _ | . , | ٠ ، | ı | • | ı | 1 | 1 | 1 | ŧ | 1 | _ | 1 | _ | - | 1 | ı | ı | 1 | _ | 0 | • | 0 ~ | | | | | വ യ | _ | 0 | | - | • 1 | _ | _ | | 0 | 0 |) | _ | 0 | _ | 0 | 0 | _ | 0 | 0 | _ | ~ | _ | _ | 0 | 0 | o - | | | | | a 5 | 1 | • | ~ | - | - | - , | 0 | 0 | _ | 0 | i | | 0 | 0 | 0 | 0 | _ | 0 | 0 | _ | _ | 0 | 0 | 0 | _ | 1 (| | | | | 6
25 | 0 | 0 | _ | | • | 0 | | • | 1 | 1 | ì | 0 | 1 | 0 | 0 | 0 | _ | ı | 0 | t | | <u>, </u> | _ | 0 | _ | | • | | | | 9 8 | • | ı | 0 | _ | _ | · | - | 0 | 0 | 0 | ı | _ | 0 | _ | | 0 | 0 | | _ | _ | _ | ۳ | ı | 0 | _ | o | | | | | 13 | 1 | 1 | _ | _ | - | | 0 | 1 | 1 | | 1 | ı | ı | 0 | ı | ı | • | • | 1 | • | • | _ | - | 0 | _ | . – | | | | | 95 | 0 | _ | 0 | - | . بسم | 0 | 0 | Ö | 0 | 0 | 0 | | 0 | 0 | _ | 0 | _ | - | 0 | ı | 0 | | 0 | 0 | | 9 6 |) | | | | | | | | | | | | | | | | - | 740 | | | | | | | | | | | | | | _ | | | | I I
58 109 | 1 | _ | _ | _ | - , | | 0 | 0 | 0 | 0 | • | _ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | _ | | _ | 0 | ı | ١,- | • | | | | | _ | 0 | | - | | | _ | 0 | 0 | _ | 0 | - | _ | | | 0 | _ | 1 | _ | | _ | | ŧ | _ | 0 | 1 1 | | | | | 1
45 | | <u> </u> | <u> </u> | _ | | _ | _ | • | | | 1 | _ | 1 | | 1 | 1 | <u> </u> | | _ | <u> </u> | 1 | _ | <u> </u> | 1 | 1 | - | | | | 2. ARNORED/WHEELED VEHICLES | Government/Industry (G/I) Respondee | | Requirements Similar to 785 Used | Mission vs. Logistics Reliability Considered | 785 Applicable to Nonelectronic Equipment | 85 Cost Effective for Monelectronic Equipment | Performed on Nonelectronic Equipment | Reliability Predictions Used to Monitor Design | Overhaul/Maintenance Actions Included | 56 Satisfactory to Nonelectronic Equipment | . > | WIL-HDBK-5 Satisfactory for Material Properties | Planned Reliability Growth Included in Program | Internal Parts Selection Procedures Utilized | Operational/Environmental Test Profiles Dev. | | to 781 Used | Constant Failure Rate Assumed for Testing | Appropriate for Monelectronic Equipment | Accelerated Testing Methods Utilized | May Government Contracts Specify a RCM Program | DID's Add to Effectiveness of Reliability Req. | Lack of Standardization of Nonelectronic Parts | Separate Rel. Specs. for Large and Small Items | Societies to Upgrade Rel. Specs. | | NomeJectronic into. Available for Rel. Analysis
Handbook with Procedures/Ruidance Possible | | | | 2. ARMORED/WH | Subject | Utilization of 785 | irements Simi | ion vs. Logis | Applicable to | Cost Effective | 1 Performed on | lability Predic | thaul/Maintena | Satisfactory . | HDBK-5 Used to | HDBK-5 Satisfa | med Reliabilit | irnal Parts Sei | ational/Envin | Utilization of 781 | Procedures Similar to 781 Used | stant Failure | Appropriate fo | elerated Testin | Government Cor | 's Add to Effec | c of Standardiz | rrate Rel. Spec | Effort by Eng. Soc | Ruggedization | lectronic info
book ≥fth Proc | | | • | | Question | _ | _ | 10 Miss | a 785 | 116 785 | LA. | 22 Reli | | | = | _ | | | | _ | | | 18/ | | S2 Amy | _ | | -, | effo | | | | GENERIC PRODUCT SUMMARY OF YES/NO RESPONSES | RESPONSE | |---------------| | 옾 | | H | | 1 | | ON = 0 | | YES | | 11 | | | | | | | , 9 | 4 | 4 | <u> </u> | _ | 2 | 2 | ~ | <u>m</u> | 3 | (7 | 9 | 2 | m | _ | | 2 | <u>_</u> | 3 | 2 | 4 | က | _ | - | - | 20 | <u> </u> | |--------------------------|---------------------------|-------------------|---|--|---|--|---|--|---------------------------------------|---|--|--------------------------------------|-------------------------------------|--|---|--------------------|--------------------------------|---|---|--------------------------------------|--|--|---------------------------|----------------------------|--|--|---| | | HI | , — | _ | 0 | 0 | | 0 | 0 | _ | _ | ~ | | | _ | | _ | | 0 | ~ | 0 | _ | _ | 0 | 8 | | ~ r | ~ - | | 2 | _ | | | | | | | | TOTALS | 0 = | <u>-2</u> | 2 2 | 2 | 응 | 응 | = | 2 | 2 | $\frac{\Xi}{\Xi}$ | 0 4 | <u></u> | <u>-</u> | = | = | = 3 | 25 | 2 | == | <u> </u> | 음 | - | 5 | 0 2 | 2 | | 20 | | F) | • | _ | | | | _ | | | | - | _ | | | | | | | | | | _ | | _ | _ | | | | | | œ۱ | | _ | 5 | 9 | N. | ~ | ~ | _ | - | _ | 0 | * | 0 | ۵. | m | 0 | LC | N | _ | m | က | S | 4 + | 0 | w c | 2 K | | | - | ~ | 0 | 2 | | ~ | m | 7 | 0 | 0 | Ξ | 0 | m | = | = | _ | <u>-</u> | = | Ö | 7 | _ | ~ | _ | = | | | 2 0 | | | | + | | | | | | | | | | 40 | | | | | | | | | | | | | | | 16 | | | (1) | 1 | | ~ | | ent | | ig | • | | | Properties | No. | 75 | | | | | | | Ä | 8 | £ | Items | SS | ٠ | Analysıs
ible | | | Government/Industry (G/I) | | | a a | دد | - | ۔۔ | es | | ent | | per | in Program | íze | Dev. | | | - | ent | | 5 | <u>ح</u> د | Nonelectronic Parts | 7 | Š | <u></u> ' | E a | | | Š | 1 | | Ď. | en | 8 | Ē. | 눌 | | 8 | | Š | <u>a</u> | Ė | 2 | | | 2 | Z | , | 4 | it | ìic | | - | æ. | | | | inst. | | | ě | Ē | | Ë | Ξ. | Ę | 9 | Ţ | , | • | | 116 | | | est | 9 | . | \$ | <u>E</u> | 5 | J | 2 | <u>ل</u> و ا | es
oss | | | <u> </u> | | | 2 | 뎚 | ٩. | E | Š | 3 | U | 11 | Ţ | g | Ę | 5 | | | بيد | u | ize | 15 | 11.0 | ç | Z | age | Aff | ř á | | S | <u> </u> | | Sed | 7 | ပ္ | ct | 2. | 2 | IR | oni | iab | ate | 5 | 큥 | 4 | | | \$ | oni | til | ify | . æ | nel | | ğ | ty ' | and ca | | ARMORED/WHEELED VEHICLES | mment/Ind
Resnondee | | 5 | abi | ٥ | ele | ٥ | 2 | 2 | بن | Rel | I | = | Š | Tes | | Use | P | بن | S U | ě | ₽. | 2 | Specs, for Large and Small | <u>ت</u> | Ę. | Info. Available for Rel. Ana
Procedures/Guidance Possible | | Œ | ren . | | 78 | | act. | 000 | پر | Š | tio | <u>1</u> | SS | Ę | £ | ٥ | ·
- | | 23 | SSL | Ple | pod | S | ess | ot | | N
Ct | 5 | S/G | | ā | Ĝ | 1 | 2 | ~~ | Ē | ř | ē | STIC | Ą | 5 | Še | Ž | Ĕ | <u>::</u> | Ĭ, | | 7 | * | 5 | fet. | S
S | ê | on | ē | rie. | 퓽 | Ire I | | 日日 | | | ar | 15 | 3 | <u>ب</u> | 2 | 1 | e
S | 0 | ¥ | Š | <u>ج</u> | <u>8</u> | | | * | ate | F | 7 | <u>ئ</u> ر. | 1 | ati | ķ | ie | 쬬. | e . | | 불 | | 785 | E | ist | \$ | 3 | 5 | di. | B | > | 2 | Sfa | 111 | Sel | Ę | 781 | 12 | و م | 40 | 1 | 3 | , <u>e</u> | diz | ě | ્ટ્ર | ion | 돌 | | E | ŧ | ا: ا | Sis | 2 | <u>.</u> | S | g | 2 | 달 | to | Sed | ati | abi | 13 | Ell |
J O | Ē | j | ate | les | ¥ | H | dar | S | Ġ | zat | ∪ द | | Š | Subject | 2 2 | ıts | | S. C. | Eff | E | > | , ē | Fac | 2 | S | e] j | Par | 7 | 5 | S | -ai | Ä | 8 | 1 | \$ | Z | Re 1 | E | EG. | 2 2 | | ¥ | 3 | ‡ | Ū | > | 11 | +1 | Ţ | - | | . I | × | × | ď | _ | CO | Ţ | نة | 벌 | Š | rat. | ē | B | S | 8 | á | ğ | K
K
K | | 2 | | 1 | ֓֞֓֓֓֓֓֟֝֓֓֓֟֝֟֝֓֓֓֓֓֓֓֓֓֓֟֝֓֓֓֓֓֓֓֟֝֟֓֓֓֓֓֡֡֝֡֡֡֝֡ | ō | Ap | Š | ية | ap | tai | Sa | Ę | = | ĕ | Ě | a
C | izi | 8 | Ē | Ą | je! | હ | S | 6 | Ta | ţ | ٠.
چ | ž Š | | | ç | Hilization of 785 | Requirements Similar to 785 Used | dission vs. Logistics Reliability Considered | 785 Applicable to Monelectronic Equipment | 785 Cost Effective for Wonelectronic Equip | PMEA Performed on Nonelectronic Equipment | Reliability Predictions Used to Monitor Design | Overhaul/Maintenance Actions Included | 756 Satisfactory to Nonelectronic Equipment | IIL-HDBK-5 Used to Assess Reliability | MIL-HDBK-5 Satisfactory for Material | Planned Reliability Growth Included | Internal Parts Selection Procedures Utilized | Operational/Environmental Test Profiles | Utilization of 781 | Procedures Similar to 781 Used | Constant Failure Rate Assumed for Testing | 781 Appropriate for Nonelectronic Equipment | Accelerated Testing Methods Utilized | Any Government Contracts Specify a RCM Program | JID's Add to Effectiveness of Reliability Reg. | ack of Standardization of | Separate Rel. | Effort by Eng. Societies to Upgrade Rel. Specs | Joes Ruggedization Requirements Affect Rel | Nomelectronic Info. Available for Kel.
Handbook with Procedures/Guidance Possi | | | Ouest jon | <u> </u> | 20 | X | _ | _ | 14. | , e | 0 | س) ا | 36 | X | ۵. | H | 0 | ₽ | ο. | ပ | 7 | ~ | < | | 1 | S | ш | Ω; | 2 I | | | | | . | 2 | 6 | 110 | 00 | 22 | 24 | · LC | 7a | 27b | 53 | ~ | 33 | 4 | 35 | 6 | \$ | _ | ~ | m | 4 | S | 26 | ~ | 8 83
28 83 | | | Č | न च | 4 | _ | - | - | · = | ~ | Ň | ~ | N | 2 | Ň | 'n | m | (4) | m | m | 4 | 4 | 'n | 'n | Ġ | 'n | Ŋ | 10 | กักกั | GENERIC PRODUCT SUMMARY OF YES/NO RESPONSES 1 = YES 0 = NO - = NO RESPONSE THE PROPERTY OF O | | Government/Industry (G/I) I I I G G G Respondee 14 52 108 110 112 13 18 24 25 | | | | Considered 1 1 0 1 1 1 0 1 | quipment [100] - [1] | nic Equipment 1 0 0 1 - 1 1 1 | quipment [11111 - 11 | onitor Design 1 1 0 0 1 | uded 0 1 - 1 - 0 - 0 1 | Equipment - 0 1 1 - - 1 0 | lity 0 1 0 0 1 - 0 0 | ial Properties - 1 1 | ed in Program 0 1 0 1 0 - 1 1 | es Utilized 1 1 1 1 1 - 0 1 | offles Dev. 0 1 1 1 1 0 1 1 | | 1010- | Testing 0 1 1 1 1 | Equipment - 0 - 0 - - 0 0 | zed 1 1 - 0 0 | a RCM Program - 1 0 0 0 | iability Req. (1 1 1 1 - [- 1] | ctronic Parts - 1 - 1 1 1 | d Small Items 1 - 0 - 1 0 1 | de Rel. Specs 1 0 1 - 0 0 - | ffect Rel. 1 - 1 | Rel. Analysis 1 - 1 0 0 | | |--------------------------------|---|-----|----------------------|------------------------------------|---|--|--|------------------------|-----------------------------------|------------------------|-----------------------------|--------------------------|----------------------|-------------------------------|---------------------------------|-------------------------------|---|-----------------------------------|-------------------|-------------------------------|---|---|-----------------------------------|--|---|-----------------------------|------------------------|-------------------------|--| | 3. MISSILE/SPACE CRAFT SYSTEMS | Government/Ind
Guestion Subject Respondee | 785 | e neilization of 700 | b Requirements Similar to 785 Used | 10 Mission vs. Logistics Reliability Considered | la 785 Applicable to Nonelectronic Equipment | 11b 785 Cost Effective for Honelectronic Equip | <u>u</u> | æ | | | | - | _ | | | _ | 35 Procedures Similar to 781 Used | 0 | , – | 47 Accelerated Testing Methods Utilized | 52 Any Government Contracts Specify a RCM Program | _ | 4 Lack of Standardization of Nonelectronic Parts | 55 Separate Rel. Specs. for Large and Small | ш. | Does Ruggedizat | | SOO MANGOOOK WITH PTOCEGUIES/GUIGANCE POSSIDIE | GENERIC PRODUCT SUMMARY OF YES/NO RESPONSES | I TOTALS | 0 0 | 16 16 16 | 43 12 07 | 2 0 0 2 3 10 | 4 8 1 2 0 2 | 2 10 2 0 1 2 | 2 9 2 0 1 3 | 5 6 0 3 0 3 | 45 13 04 | 23 13 26 | 25 12 25 | 2 3 4 0 7 | 11 0 0 1 2 | 25 32 05 | 0 | 13 | | 117 | 12 0 | 2 7 | | | 0 | 0 | | | 17 00 45 | 20 03 39 | 36 01 25 | |---|-----|--|------------------|--------------|-------------|--------------|-------------|-------------|---------------------------------|----------|-----------|--------------------------|------------|---------------------------------------|---|--------------|--------------------|---------|-------------|---------------------|-------------------------------------|---------|-------------|-------------|-------|----------------|-------------|-------------|--| | - = NO RESPONSE | | 6 6 6 6 6 6 8
98 99 100 101 102 103 | 1 - 1 | 1 1 1 1 | | | | 1 1 0 1 | 1 0 1 | 0 1 | 1 1 1 - 0 | 0 - 1 | 1 | 1 0 1 | - 0 0 | | 0 - 0 0 1 1 | 0 - 0 0 | L - L C O O | - 0 0 0 - 0 | 1 1 0 - 1 | 0 0 0 0 | | | 0 0 1 | 1 0 0 - 1 - | 1 1 1 | 0 | 1 - 1 0 - 1 | | 1 = YES 0 = NO 3 MISSIF/SPACE CRAFT SYSTEMS | | Government/Industry (G/I) Ouestion Subject Respondee | ilization of 785 | Requirements | _ | 785 Applicab | | _ | Reliability Predictions Used to | _ | | MIL-HDBK-5 Used to Asses | MIL-HDBK-5 | Planned Reliability Growth Included i | 32 Internal Parts Selection Procedures Utilized | Operational/ | Utilization of 781 | | | 781 Appropriate for | Accelerated Testing Methods Utiliza | Ī | DID's Add t | Lack of Sta | • | Effort by Eng. | Does Rugged | Nonelectron | 58b Handbook with Procedures/Guidance Possible | # GENERIC PRODUCT SUMMARY OF YES/NO RESPONSES | - IN KENTURNE | | |---------------|---------| | | | | | SYSTEMS | | I = YES | TRANSIT | | • | 7 | | Ouestion | Government/Industry (G/I) | - B | ი ფ | |-----------|---|-------------|---------------| | 7 | ilization of 785 | ı | 0 | | \$ | Requirements Similar to 785 Used | 1 - | 1 6 | | 10 | Mission vs. Logistics Reliability Considered | | (| | 11a | 785 Applicable to Nonelectronic Equipment | 1 | > (| | 116 | 785 Cost Effective for Monelectronic Equipment | 1 1 |) | | 82 | FMEA Performed on Nonelectronic Equipment | (| D | | 22 | Reliability Predictions Used to Monitor Design | 0 | 0 | | 24 | Overhaul/Maintenance Actions Included | 9 | - (| | 25 | 756 Satisfactory to Nonelectronic Equipment | 1 1 | 0 | | 27a | MIL-HOBK-5 Used to Assess Reitability | | 9 | | 27b | | 0 | 1 (| | 29 | Planned Reliability Growth Included in Program | 0 | 0 | | 35 | Internal Parts Selection Procedures Utilized | | , | | 8 | Operational/Environmental Test Profiles Dev. | _ | (| | ₹ | Utilization of 781 | ı | ۰ | | 35 | Procedures Similar to 781 Used | 1 (| — , | | 39 | Constant Failure Rate Assumed for Testing | _ | _ | | 4 | 781 Appropriate for Nonelectronic Equipment | 1 | | | 47 | Accelerated Testing Methods Utilized | _ | _ | | 52 | Any Government Contracts Specify a RCM Program | 1 / | • | | 53 | DID's Add to Effectiveness of Reliability Req. | _ , | | | 75 | | - (| -, | | 55 | Separate Rel. Specs. for Large and Small Items | - | - | | 28 | Effort by Eng. Societies to Upgrade Rel. Specs. | 0 | ١, | | 21 | Does Ruggedization Requirements Affect Rel. | - (| - | | 28 | Nonelectronic Info. Available for Rel. Analysis | > | | | ģ | Handbook with Procedures/Guidance Possible | _ | - | GENERIC PRODUCT SUMMAPY OF YES/NO PESPONSES | | $1 = YES \qquad 0 = MO \qquad - = MO$ | 띯 | NO RESPONSE | 4SE | | | | |---------------|---|----------------|-------------|---------------|---------------|---------------|-------------| | | | | | _ | | TOTALS | | | | 5. CONSTRUCTION EQUIPMENT | | | | | 0 | 1 | | | Government/Industry (G/I) | | | y | 1 | 16 | 1 16 | | Question | tion Subject Respondee | 0 | 2 | 3 | } | ; | + | | 4a | Utilization of 785 | 0 | 0 | 0 | 00 | 2 1 | 0 | | 40 | Requirements Similar to 785 Used | | 0 | 0 | 0 | , | 0 | | 2 | Mission vs. Logistics Reliability Considered | _ | • | | _ | 0 | 0 | |]a | 785 Applicable to Nonelectronic Equipment | | 1 | 0 | 0 | 10 | <u> </u> | | 116 | 785 Cost Effective for Nonelectronic Equipment | - , | 1 | 0 | 0 - | <u> </u> | <u> </u> | | 18 | FMEA Performed on Nonelectronic Equipment | - (| 1 1 | _ , | | <u> </u> | <u> </u> | | 22 | Reliability Predictions Used to Monitor Design | 0 | (| | | <u> </u> | 5 6 | | 24 | Overhaul/Maintenance Actions Included | - | ပ | _ | | <u>0</u> | <u> </u> | | 25 | 756 Satisfactory to Nonelectronic Equipment | 0 | ı | 1 0 | 0 | <u></u> | = ; | | 27a | MIL-HDBK-5 Used to Assess Reliability | 0 | 1 | 9 | 50 | | 5 . | | 27b | MIL-HDBK-5 Satisfactory for Material Properties | 0 | 1 | 0 | 0 | | = (| | 53 | Planned Reliability Growth Included in Program | | | 0 | 20 | <u> </u> | 0, | | 32 | Internal Parts Selection Procedures Utilized | - | 1 | 1 1 | <u> </u> | 0 | = ; | | 33 | Operational/Environmental Test Profiles Dev. | P (| ı | - 1 | | 0 | = ; | | 34 | Utilization of 781 | 0 | ı | | <u></u> | <u> </u> | <u> </u> | | 35 | Procedures Similar to 781 Used | -
| i | 1 | = ; | <u>0</u> | <u> </u> | | 39 | Constant Failure Rate Assumed for Testing | 0 | 1 | _ | 0 | | <u> </u> | | 4 | 781 Appropriate for Nonelectronic Equipment | • | 1 1 | 5 | 0 | | 0 7 | | 47 | Accelerated Testing Methods Utilized | (| - (| 0. | 2 0 | - 0 | 5 6 | | 52 | Any Government Contracts Specify a RCM Program | > (| a | _ , | - r | 07 | <u> </u> | | 23 | DID's Add to Effectiveness of Reliability Req. | - | ı | (| 5 | <u> </u> | <u> </u> | | 54 | | , | 1 | (| | <u> </u> | <u> </u> | | 22 | | — , | 1 | 5 | <u> </u> | | | | 26 | Effort by Eng. Societies to Upgrade Rel. Specs. | | • | | 2: | <u>)</u> | - (| | 27 | Does Ruggedization Requirements Affect Rel. | ŧ | ı | _ < | - 0 | 0 0 | 70 | | 283 | | ۱ - | | > - | <u>> -</u> | <u>-</u> C | 7 | | 28 | Handbook with Procedures/Guidance Possible | - | 1 | _ | - | <u>></u> | <u>-</u> | S. Brown of the total than the state of the same of GENERIC PRODUCT SUMMARY OF YES/NO RESPONSES 1 = YES 0 = NO - = NO RESPONSE THE REPORT OF THE PARTY | | ٠., | _ | | _ | | | _ | | | _ | | | | | | | | | _ | _ | _ | | | | | _ | _ | |---|-----|----------------------------------|--|---|--|---|--|---------------------------------------|---|---------------------------------------|---|--|--|--|--------------------|--------------------------------|---|---|--------------------------------------|--|--|--|--|---|---|---|--| | ი დ | - | 0 | _ | _ | 1 | | _ | | 0 | 0 | ı | _ | 0 | | 9 | 0 | _ | 0 | 0 | | <u>-</u> | , | | 0 | 0 | <u>۔</u> | - | | 55 | 0 | 0 | _ | _ | _ | - | , - | | 0 | 0 | ì | _ | ı | 0 | | 0 | , - | 0 | ì | 0 | - | | - | 0 | - - (| 5 | _ | | | 0 | 1 | ,- - | | 1 | 0 | | 1 | ı | ł | 1 | 1 | 0 | - | 0 | t | | • | ı | • | ŧ | • | • | ŧ | ŧ | 1 | ŧ | | a <u>r</u> | - | 0 | | - | - | - | _ | 0 | ı | • | ı | _ | | 0 | (| 0 | _ | _ | 0 | ı | ŧ. | | • | ı | • | ı | • | | n <u>1</u> | - | 1 | 0 | - | | 0 | 0 | 0 | t | 1 | ı | 0 | 0 | , | (| 0 | | | 0 | 0 | | 0 | 0 | 0 | | ı | ı | | a £ | - | 1 | | 1 | ı | _ | 1 | ı | t | 0 | 0 | 1 | t | ı | ı | 1 | 1 | 1 | ı | | ŧ | _ | 0 | 0 | | • | ı | | 31 6 | 0 | 0 | , | 0 | 0 | - | , | - | 1 | 0 | 0 | 0 | ı | _ | - - ; | , | | 0 | 0 | | _ | ~ | 0 | ı | (| > | - | | 9 2 | , | 1 | _ | 1 | i | 0 | 0 | 1 | • | ŧ | 1 | | • | ŧ | ı | • | ŧ | • | ŧ | 1 | 1 | 1 | 1 | 1 | 1 | | • | | | | - | | | | | | | | | _ | | _ | | | | | | | | | - | | | | | - | | I
97 | - | 0 | _ | _ | 0 | _ | 0 | | 0 | 0 | • | | • | | 0 | 0 | 0 | 0 | | - | 0 | ı | ì | h | 1 . | | _ | | 1 74 | - | 1 | _ | 0 | 0 | | 0 | | 0 | 0 | | 0 | 0 | | - | 0 | - | 0 | 0 | 0 | 1 | t | ı | 0 | | - | _ | | I 55 | 0 | 0 | _ | _ | _ | | | | 0 | 0 | • | 0 | - | 0 | 0 | 0 | | 0 | ı | 0 | 0 | 1 | | • | • | t (| ~ | | - 1 5 | ı | ı | 0 | | ı | | _ | t | ŧ | t | ı | | ŧ | ŧ | ι | ı | 0 | ŧ | | ı | 1 | ter, | ŧ | 1 | • | | _ | | | + | - | ~ | | | | | | ••• | | S | | | | | | | | | _ | | | | - | | v | | | 6. ENGINES/POWER PLANTS Government/Industry (G/I) Subject Respondee | 785 | Requirements Similar to 785 Used | Mission vs. Logistics Reliability Considered | 785 Applicable to Nonelectronic Equipment | 785 Cost Effective for Nonelectronic Equipment | FMEA Performed on Nonelectronic Equipment | Reliability Predictions Used to Monitor Design | Overhaul/Maintenance Actions Included | 6 Satisfactory to Monelectronic Equipment | WIL-HOBK-5 Used to Assess Reliability | MIL-HDBK-5 Satisfactory for Material Properties | Planned Reliability Growth Included in Program | Internal Parts Selection Procedures Utilized | Operational/Environmental Test Profiles Dev. | Utilization of 781 | Procedures Similar to 781 Used | Constant Failure Rate Assumed for Testing | 781 Appropriate for Monelectronic Equipment | Accelerated Testing Methods Utilized | Any Government Contracts Specify a RCM Program | DID's Add to Effectiveness of Reliability Req. | Lack of Standardization of Nonelectronic Parts | Separate Rel. Specs. for Large and Small Items | Effort by Eng. Societies to Upgrade Rel. Specs. | Does Ruggedization Requirements Affect Rel. | Nonelectronic Info. Available for Rel. Analysis | Handbook with Procedures/Guidance Possible | and the second of the second | TOTALS | 0 | 116 | 13 11 | 24 24 | 111 000 | 1 1 0 2 | 2 1 14 | 0 3 0 0 | 2 0 2 2 | 0 2 1 3 | 3 2 1 6 | 34 14 | 02 36 | 2 2 0 3 | 13 24 | _ | _ | - | 2 0 0 2 | 3 3 1 3 | 14 14 | 2 2 1 3 | 20 24 | 0 1 3 2 | 03 33 | 14 24 | | 13 25 | 000 | - | |-------------------------|-------------------------|---|-----------------------|-------|---------|---------|--------|--|---------|----------|--|-----------|-------|-------------------------------------|---|----|-----|-----------------------------------|---------|---------|-------|---|--------------|--|---------------|--|----------|---|--|---| | | - | 9 | 214 | 0 | 3 7 | 3 5 | 13 | 4 5 | 24 | 33 | 00 | 00 | 3 0 | 23 | <u>-</u> | 24 | 1 4 | - | 2 6 | 0 2 | 20 | 13 | * | 1 2 | 1 2 | 10 | <u>0</u> | 0 | 4 | - | | S CHCTHCC/BOUCD BY ANTC | o. Endines/rones really | Government/Industry (G/I) (Question Subject Respondee | 4a Utilization of 785 | _ | _ | _ | | 18 FMEA Performed on Monelectronic Equipment | _ | <u> </u> | 25 756 Satisfactory to Monelectronic Equipment | . | _ | Planned Reliability Growth Included | 32 Internal Parts Selection Procedures Utilized | _ | | 35 Procedures Similar to 781 Used | | | | 52 Any Government Contracts Specify a RCH Program | | Lack of Standardization of Monelectronic | Separate Rel. | Effort by Eng. Societies to Upgrade Rel. | | 58a Honelectronic Info. Available for Rel. Analysis | 540 Handbook with Procedures/Guidance Possible | | GENERIC PRODUCT SUMMARY OF YES/NO RESPONSES THE REPORT OF THE PROPERTY | | TOTALS | 116 | 2 0 2 1 | | 2 2 2 0 | _ | _ | (| > (| 7 | V (| 7 | - c | 310 117 | 2 | 1 2 | 7 | 7 | 7 | 0 | m | 0 | 0 | 7 | 0 | | , | 2 1 10 | |------------------|-----------------------------|--|-----------------------|---------|---|-----|-----|----------|---------------|----------|------------|---|-----|---|-------|-------|----------|---|-----|---|-----|-------|---|---|--|---|---------------|--| | | | 6 6
5 53 | 0 - | 1 | <u></u> | _ | ' | 0 | 1 | · | 1 |
1 | 1 1 | 0 | | 0 | <u>'</u> | | | - | 1 | - | • | • | 1 0 | ' | 1 | <u> </u> | | = NO RESPONSE | | I I I I I
17 39 52 90 | 1 1 0 0 | 0 - 0 - | 0 - 0 | - 0 | - 0 | | - (| | - · | | | | 0 0 1 | 0 0 1 | 000 | | 0 0 | | 0 0 | 0 0 1 | | 0 - 0 | 0 1 1 - | 0 | 0 | | | 1 = YES 0 = MO - | 7. HYDRAULIC/ROCKET ENGINES | Government/Industry (G/I) Question Subject Respondee | 4a Utilization of 785 | | 10 Mission vs. Logistics Reliability Considered | | _ | _ | _ | . | • | 2/a MIL-MOBK-5 Used to Assess Reliability | | 23 Figures Keildbillty Growin included in Frugion 32 Internal Parts Selection Procedures Utilized | _ | _ | _ | _ | • | 47 Accelerated Testing Methods Utilized | | _ | 54 Lack of Standardization of Nonelectronic Parts | 55 Separate Rel. Specs. for Large and Small Items | 56 Effort by Eng. Societies to Upgrade Rel. Specs. | | Monelectronic | 58b Handbook with Procedures/Guidance Possible | And the state of t | | GENERIC PRODUCT SUMMRY OF YES, | YES/NO RESPONSES | ES | ONESE | S | | | |----------|---|------------------|-----|-----------|---|--|---------------| | | 1 = YES 0 = MO - = MO | RESPONSE | ğ | Ж | | | | | | | | _ | | | TOTALS | | | | 8. RADAR SYSTEMS | | | | , - | 0 | • | | | Government/Industry (G/I) | | | 9 | <u>-</u> 2 | 16 | ļ | |
Question | ion Subject Respondee | 22 73 | | 6 | #- | ! | ग | | 4a | Utilization of 785 | • | | - | | 00 | _ | | # | Requirements Similar to 785 Used | , | _ | 1 | 0 | <u>-</u> | , | | 01 | Mission vs. Logistics Reliability Considered | _ | | _ | 2 1 | 0 | 0 | | Ha | | 0 | | 1 | <u></u> : | 0 9 | 0 | | 116 | 785 Cost Effective for Monelectronic Equipment | . | | _ | _ : | <u> </u> | 5 (| | 18 | FMEA Performed on Monelectronic Equipment | 0 | | o • | <u>0 :</u> | | 5 | | 75 | Reliability Predictions Used to Monitor Design | | | - , | - (| <u> </u> | 5 6 | | 7 | | c | _ | _, | ======================================= | <u> </u> | 5 C | | 52 | 756 Satisfactory to Nonelectronic Equipment |)
(| _ | - (| - 6 | <u> </u> | 5 0 | | 27a | | _
 | | - |)
) | 7 | > (| | 276 | MIL-HOBK-5 Satisfactory for Material Properties | | | 1 (| <u> </u> | <u>) :</u> | 70 | | 8 | lity Growth Included | | | - |) (| 5 6 | 5 C | | 35
26 | Internal Parts Selection Procedures Utilized | - ,- | | > ~ | 2-6 | - 0 | 0 | | 3 % | 1631 161 163 | . , | | | 2 | 0 | 0 | | 32 | Procedures Similar to 78] Used | . 1 | 0 | 0 | 0 | | _ | | 36 | Constant Failure Rate Assumed for Testing | · | _ | _ | 2 | <u>0</u> | 0 | | \$ | 781 Appropriate for Nonelectronic Equipment | 0 | ~ | _ | _ | 0: | 0 (| | 47 | Accelerated Testing Methods Utilized | <u> </u> | 0 | 0 | 0 | <u> (</u> | 5 | | 25 | Any Government Contracts Specify a RCM Program |
O | | ٥, | 0 0 | 2 | 5 - | | 23 | DID's Add to Effectiveness of Reliability Req. | 1 | | (| <u>- (</u> | <u> </u> | - (| | Z, | ardization of Monelectronic | 1 1 | (| 0 | <u>.</u> | <u>- </u> | (| | 52 | Specs, for Large and Small | c | | 10 | <u> </u> | 2: | 50 | | 8 [2 | Effort by Eng. Societies to upgrade well speads. Inches Discognization Deceivements Affect Rel. | · - | - 1 | > | <u></u> | 0 | , | | 5 8 | Monel actions to Info Available for Del: Analycic | . , | 1 | 0 | 0 | 0 | 2 | | 88 | Procedures/Guidance Possible | _ | | - | 2 | 0 | - | The first transfer of the second seco GENERIC PRODUCT: SUMMRY OF YES/NO RESPONSES 1 = YES 0 = MO - = MO RESPONSE The state of the second state of the second | TOTALS | 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 76 77 | | | | 30. | 1 0 0 0 1 1 2 1 3 0 0 | 0 0 0 0 1 1 1 1 4 0 0 | 1 1 1 0 0 1 3 1 2 0 0 | 0 - 0 - 0 0 0 0 0 | | 0 0 0 1 0 4 | 1 1 1 0 1 1 4 1 1 10 0 | 1 0 | 1 0 1 1 - 1 1 3 1 1 1 0 1 | 1 2 | 1 0 - 1 0 0 0 2 0 2 11 1 | 30 | 00 31 | 40 11 | 10 41 | 2 | 211 00 | 0 | 1 - 0 - 1 - 2 0 1 0 2 | 1 1 1 1 3 1 0 0 2 | 0 0 0 0 0 0 5 11 3 | |-------------------------------------|---|--|---|---|--|--|---|--|---------------------------------------|---|---------------------------------------|---|--|--|--|--------------------|--------------------------------|---|---|--------------------------------------|--|--|--|--|---------------------------|---|---| | 9. COMPITER/AVTONICS/COMMINICATIONS | Government/Industry (G/I) | TOTAL SAFETY OF THE PROPERTY O | Utilization of 785
Requirements Similar to 785 lised | Mississ us I saisbiss Balishilish: Considered | Mission Vs. Logistics Keliability Considered 785 Applicable to Nonelectronic Equipment | 785 Cost Effective for Nonelectronic Equipment | FMEA Performed on Nonelectronic Equipment | Reliability Predictions Used to Monitor Design | Overhaul/Maintenance Actions Included | 756 Satisfactory to Nonelectronic Equipment | MIL-HDBK-5 Used to Assess Reliability | MIL-HDBK-5 Satisfactory for Material Properties | Planned Reliability Growth Included in Program | Internal Parts Selection Procedures Utilized | Operational/Environmental Test Profiles Dev. | Utilization of 781 | Procedures Similar to 781 Used | Constant Failure Rate Assumed for Testing | 781 Appropriate for Monelectronic Equipment | Accelerated Testing Methods Utilized | Any Government Contracts Specify a RCM Program | DID's Add to Effectiveness of Reliability Req. | Lack of Standardization of Monelectronic Parts | Separate Rel. Specs. for Large and Small Items | | Does Ruggedization Requirements Affect Rel. | Monelectronic Info. Available for Rel. Analysis | the second of | TOTALS | | 3 2 0 2 | 21 13 | 211 000 | רוס סוו | <u> </u> | 00 20 | 12 00 | 00 2 | 2 0 2 | 000 | 0 0 | 0 3 | 20 | 2 00 | 14 0 | | | <u></u> | 4 | 0 | 2 | _ | 100 | 0 | • 0 | |----------------------|-------------------------------------|---------|-------------|----------------------------------|-------------------------|-----------------------------|-------------------------|------------------------------------|------------------|-------------------------|----------------|--------------|--|--------------------------|------|-------------|--------------------------|-------------------------|------------------|-------------------------------------|--------------------|-------------------------------------|-----------|----------------|------------|--| | | 9 | | 0 | * | 24 | - | 33 | 23 | | | 200 | 30 | 3 7 6 | | 2 3 | 00 | 24 | 0 2 | 2 1 0 | 2(1) | 20 | 2[] | 0 2 2 | 20 | # (C | 3 4 | | | 6 6
0 75 | • | 1 | - | • | • | <u> </u> | _ | 0 | 10 | - | 1 6 | > - | 0 | _ | 0 | _ | 0 | _ | 0 | _ | 1 | | 1 | (| - | | | | | 0 | _ | _ | _ | _ | _ | _ | · ` | <u> </u> | | _ | 0 | _ | <u>'</u> | | <u>'</u> | | - | _ | | <u>'</u> | - | | - | | | G G | | _ | _ | _ | _ | _ | _ | _ | _ | <u> </u> | | | 0 | _ | 0 | _ | 0 | <u>'</u> | _ | | _ | _ | - | (| | | | 19 4 | _ | | _ | _ | _ | • | _ | _ | · · | -
- | | -
- | _ | _ | 0 | _ | _ | 0 | _ | _ | - | • | 0 | -
 | · · | | | | - | | _ | | _ | _ | | | | | | | | _ | _ | | _ | _ | _ | | | <u>.</u> | | | | | | I I
7 86 | 0 | • | 0 | _ | _ | _ | <u> </u> | _ | _ · | - | | | _ | _ | 0 | <u>'</u> | '
- | _ | <u>-</u> | | _ | 0 | - | <u> </u> | - | | | I I
38 57 | 0 | 0 | _ | 0 | | _ | _ | _ | 0 | -
- | | | • | _ | 0 | | _ | | ~ | _ | ·
 | • | | _ ` | -
- | | | | | | - | - | | | | | | | | | | | | | | | | _ | | _ | | | | | CONDITIONING SYSTEMS | Government/Industry (G/I) Respondee | | to 785 Used | Logistics Reliability Considered | Nonelectronic Equipment | for Monelectronic Equipment | Monelectronic Equipment | Predictions Used to Monitor Design | Actions Included | Nonelectronic Equipment | Ss Reliability | TOT METERIAL | Dilly Grown Included in Frogram ts Selection Procedures Utilized | ental Test Profiles Dev. | | to 781 Used | Rate Assumed for Testing | Monelectronic Equipment | Hethods Utilized | ent Contracts Specify a RCM Program | ess of Reliability | ndardization of Monelectronic Parts | Large and | to Upgrade Rel | rements Af | imo. Avallable for kel. Amalysis
Procedures/Guidance Possible | AND ASSESSED IN THE RESIDENCE OF THE PROPERTY The state of s | ი ფ | |
---|--| | 3 G | 00 | | 3 6 | 00-00 1000 1000 1-0- | | 3 6 | 0-00010000-0010111 | | က တ | - 100 100000-0 10-0- | | The second second | 0000000-00000 | | 1
58 88 | -000-00-11-011 | | 5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 110-11111-11101-11-11-1 | | - 24 | 0 | | ~ % | 00-000011-1-0-01-0-1-0- | | 35 3 | 0000-00-00-00001 | | 2 H |
 | | | | | 11. TRANSHISSIONS/POMER TRAINS/GEAR BOXES Government/Industry (G/I) fon Subject Respondee | ar to 78 ics Relia Monelect for Non- Honelect tions Us ce Actio to Nonele to Assess ctory fo y Growth ection P mmental to 781 ate Assu r Nonele g Method firacts stiveness stive | | 11. TRANSHI | 4a Utilization of 786 Hission vs. Logist 11a 785 Applicable to 785 Cost Effective 785 Cost Effective 785 Cost Effective 786 Cost Effective 786 Cost Effective 786 Satisfactory 18 FMEA Performed on 787 MIL-HDBK-5 Used to 787 MIL-HDBK-5 Satisfactory 18 Planned Reliability Procedures Similar 18 Procedures Similar 18 Procedures Similar Constant Failure 18 Constant Failure 18 Accelerated Testin 55 Any Government Con 55 DID's Add to Effect 65 Separate Rel. Spec 56 Effort by Eng. Spec 57 Boes Ruggedization Info 1888 Honelectronic Info Info Info Info Info Info Info | GENERIC PRODUCT SUPPLARY OF YES/NO RESPONSES 1 = YES 0 = NO - = NO RESPONSE The state of s | TOTALS | 1 0 - | 9 I 9 I 5 I | | 22 43 10 | 2 4 3 111 | 34 31 10 | 6 4 1 1 0 0 | 53 111 111 | 7 3 0 1 0 1 | 5.4 2 1 0 0 | 2 4 4 1 1 0 | 2 1 4 2 1 2 | 1 1 4 4 2 0 | 11 21 43 | | 3 1 2 2 2 2 | | 3 3 2 2 2 0 | 4 2 | 2 | 23 2 | * | 333 | 5 30 | 0 | 2 111 3 | 40 14 11 | 7 | 24 4 | 5 4 0 0 2 1 | | |--------|---|---------------------------|----------------------------|-----------------------|-------------------------------------|---|-------------|------------|--|------------------------------|----------------------|--|--|---|---|-------------|---|--------------------|-----------------------------------|----------------------|---------------------|--------------------------------------|---|------|--|--------------------------|----------------------------------|----------------|------|--|--| | | 11. TRANSMISSIONS/PONER TRAINS/GEAR BOXES | Government/Industry (G/I) | Question Subject Respondee | 4a Utilization of 785 | 4b Requirements Similar to 785 Used | 10 Mission vs. Logistics Reliability Considered | • | 785 | 18 FMEA Performed on Monelectronic Equipment | Reliability Predictions Used | Overhaul/Maintenance | 25 756 Satisfactory to Nonelectronic Equipment | 27a MIL-HDBK-5 lised to Assess Reliability | 27b MIL-HDBK-5 Satisfactory for Material Properties | 29 Planned Reliability Growth Included in Program | | 33 Operational/Environmental Test Profiles Dev. | Utilization of 781 | 35 Procedures Similar to 781 Used | Constant Failure Rat | 781 Appropriate for | Accelerated Testing Methods Utilized | 52 Any Government Contracts Specify a RCH Program | _ | Lack of Standardization of Nonelectronic | Separate Rel. Specs. for | Effort by Eng. Societies to Upgn | Does Ruggediza | ~ | 58b Handbook with Procedures/Guidance Possible | | GENERIC PRODUCT SUMMARY OF YES/NO RESPONSES | | 2 | | |---|----------|---| | | 11 | | | | 1 | | | | | | | | S | | | | 11 | | | | C |) | | | | | | | = YFC | Ì | | | * | • | | | II | | | 1 | - | • | | | | | | | | | | | 12. ₩ | 12. MOTOR/GENERATOR SETS | SETS. | | | | | | | | | | |------------|----------|-----------------------------------|---|---------------|-----------------|---------------|---------------|--|----------|----------|---------------|----------------| | , | | , | ustry (G/I) | - | - | IIII | - | H | 9 | 9 | اِ | 9 | | Question | tion | Subject | Respondee | 2 | 2 | 3 | 2 | 5 | ड | | g | 5 | | ₽ 4 | Util | Utilization of 785 | | | 0 | 0 | 0 | , | _ | 0 | 0 | 0 | | 4 | Regu | Requirements Similar to 785 Used | r to 785 Used | • | 0 | , | • | 0 | ١ | 0 | 0 | _ | | 20 | Wiss | ion vs. Logistic | Mission vs. Logistics Reliability Considered | _ | 0 | - | 0 | - | 0 | _ | _ | 0 | | 112 | 785 | Applicable to M | Applicable to Nonelectronic Equipment | 0 | _ | _ | | | | | _ | | | 11b | 786 | Cost Effective | 785 Cost Effective for Nonelectronic Equipment | 0 | _ | - | _ | | | | _ | 1 | | 8 2 | FEE | Performed on Me | FMEA Performed on Nonelectronic Equipment | 0 | ,- - | _ | _ | _ | 0 | 0 | _ | | | Ø | Relia | ability Predict | Reliability Predictions Used to Monitor Design | 0 | | 0 | _ | _ | 0 | 0 | _ | 0 | | 77 | Over | haul/Haintenanco | Overhaul/Maintenance Actions Included | | 0 | 0 | 0 | | 0 | | ~~ | 0 | | 52 | 756 | Satisfactory to | 756 Satisfactory to Nonelectronic Equipment | 0 | | _ | 0 | <u>, </u> | ı | | 0 | _ | | 27a | MILL | HDBK-5 Used to / | WIL-HDBK-5 Used to Assess Reliability | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | | 27b | MILH | HDBK-5 Satisfac | MIL-HDBK-5 Satisfactory for Material Properties | ŧ | 1 | • | • | • | 1 | • | ı | ı | | న | Plan | ned Reliability | Planned Reliability Growth Included in Frogram | _ | 0 | 0 | | | 0 | 0 | | 0 | | 33 | Intel | rnal Parts Selec | Internal Parts Selection Procedures Utilized | | 0 | 0 | , | _ | 0 | 0 | | - | | 33 | Open | Operational/Environmental | mental Test Profiles Dev. | _ | - | 0 | 1 | | _ | 0 | 0 | | | * | Util | Utilization of 781 | | _ | 0 | 0 | _ | - | _ | 0 | _ | 0 | | 32 | Proc | Procedures Similar to 781 Used | to 781 Used | ı | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 33 | Const | tant Failure Rai | Constant Failure Rate Assumed for Testing | - | _ | - | | _ | ~ | - | _ | 1 | | \$ | 781 | Appropriate for | 781 Appropriate for Monelectronic Equipment | 0 | 0 | 0 | ۰ | (| _ | 0 | 0 | 1 (| | 41 | Acce | lerated Testing | Accelerated Testing Methods Utilized | - | t i | 0 | - | - | <u> </u> | 0 | • | 0 | | 25 | P | Sovernment Conti | May Government Contracts Specify a RCM Program | 0 | 0 | 0 | , (| 0 | 0 | 0 | ۰ د | O | | 53 | 010 | s Add to Effect | DID's Add to Effectiveness of Reliability Req. | ı | _ | 0 | _ | ָ
פ | _ | - (| -, | (| | ま | Ta
Ta | of Standardiza | | • | 1 | , | ŧ · | _ | 0 | 0 | (| 0 | | 22 | Sepa | rate Rel. Specs. | | (| – | - (| 0 | 0 | 0 | 0 | - (| - (| | 2 | Effo | rt by Eng. Soci | Effort by Eng. Societies to Upgrade Rel. Specs. | O | 0 | _ | , | | 0 | 9 | ۰ |) | | 2 | Does | Ruggedization | Does Ruggedization Requirements Affect Rel. | _ | _ | • | < | 1 | | 5 | 0 | - | | 8 5 | Hone | ectronic inic.
book with Proce | Nomelectronic inic. Additions for Kei. Additional
Handbook with Presedings/Guidanse Dossible | - | | 1 1 | , – | - | 1 1 | 1 | - | | | Ì | | MON #1 #1 !! ! !! | | | | | | , | | | , | , | GENERIC PRODUCT SUMMARY OF YES/NO RESPONSES 1 = YES 0 = NO - = NO RESPONSE THE RESIDENCE OF THE PROPERTY | 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1 3 3 1 0 | 1 2 2 2 2 1 | 3 2 2 2 0 0 | 4 4 1 0 1 9 | 4 3 1 0 1 1 | 4 2 1 2 1 0 | 3 2 3 0 0 | 2 2 3 2 0 0 | 3 2 2 1 0 1 | 0 6 3 0 1 | 0 | 3 2 3 0 0 | 1 2 | 3 2 1 2 1 0 | G | 1
+ | 3 00 0 | 1 42 0 | 0 23 1 | 0 | 4 2 | 0 3 3 | 2 2 0 | 0 | 3 2 0 1 2 1 | 0 1 1 1 4 2 | 3 2 0 0 2 2 | |---|-----------|-------------|-------------|-------------|-------------|-------------|-----------|-------------|--|---|---|--|--|------------------------|---|-----|---|---|--------------------------------------|--|--|--|---------------|----------------|---|-------------|--| | 12. MCTOR/GENERATOR SETS Government/Industry (G/I) Question Subject Respondee | | _ | | , - | 788 | | Relfa | | 25 756 Satisfactory to Nonelectronic Equipment 3 | 27a MIL-HDBK-5 Used to Assess Reliability 6 | MIL-HDBK-5 Satisfactory for Material Properties | Planned Reliability Growth Included in Program | Internal Parts Selection Procedures Utilized | ormental Test Profiles | | _ | Constant Failure Rate Assumed for Testing | 781 Appropriate for Nonelectronic Equipment | Accelerated Testing Methods Utilized | Any Government Contracts Specify a RCM Program | DID's Add to Effectiveness of Reliability Req. (| Lack of Standardization of Wonelectronic | Separate Rel. | Effort by Eng. | Does Ruggedization Requirements Affect Re | _ | 50b Handbook with Procedures/Guidance Possible 3 | GENERIC PRODÚCT SUMMRY OF YES/NO RESPONSES 1 = YES 0 = NO ... = NO RESPONSE | | 13. GROUN | 13. GROUND SUPPORT EQUIPMENT | YENT | | | | | | ~ | 15/ | IALS | (| |-----------|----------------|---------------------------------------|---|--------------|------------|-----|---------------|-----|---|----------------|------------|----------------| | | | • | Government/Industry (G/I) | 3 | Ha | 9 6 | , e | 9 5 | 116 | 카 | 71 | - | | Question | 2 | Subject | Kesponoee | † | • | | | | - (| (| , | | | 4 | Utilizat | Utilization of 785 | | | 0 | 1 | - (| 0 | 0 | <u>- :</u> | 0 (| = ' | | 4 | Requires | Requirements Similar to 785 Used | 785 Used | | 0 | ı | 0 | _ | 5 | | , | _ | | 20 | Mission | vs. Logistics I | fission vs. Logistics Reliability Considered | - | _ | | | 0 | 1 2 | <u>-</u> | 0 | 0 | | lla | 785 Appl | icable to Monel | 785 Applicable to Monelectronic Equipment | ,,,,, | _ | ı | - | _ | 15 | <u>0</u> | 0 | = | | 11 | 785 Cost | Effective far | 785 Cost Effective for Monelectronic Equipment | ent | ı | 1 | _ | , | 0 | 00 | _ | 2 | | 8 | FREA Per | formed on Mone | PMEA Performed on Monelectronic Equipment | | _ | 0 | ,_ | _ | 1 2 | - 0 | 0 | 믕 | | 2 | Reliabil | ity Predictions | Reliability Predictions Used to Monitor Design | ign | 0 | 0 | _ | 0 | <u>_</u> | 1 2 | 0 | 믕 | | 7 | Overhaul | Overhaul/Maintenance Actions Included | tions Included: | | _ | ı | _ | 0 | _ | <u>-</u> 0 | 0 | <u> </u> | | 25 | 756 Sati | sfactory to No | Satisfactory to Monelectronic Equipment | | ı | t | 0 | _ | 0 | - | | _ | | 27a | MIL-HDBK | IIL-HDBK-5 Used to Assess Reliability | iss Reliability | | 0 | 1 | 0 | 0 | <u>0</u> | 1 2 | . | 5 | | 23 | MIL-MOBK | IIL-HOBK-5 Satisfactory for Material | for Material Properties | ties | • | • | • | 1 | 0 | 0 | _ | (7) | | 82 | Planned | Reliability Gra | Planned Reliability Growth Included in Program | | _ | 1 | | 0 | _ | 0 | . | | | 33 | Internal | Parts Selection | Internal Parts Selection Procedures Utilized | 7 | 0 | 1 | _ | | 0 | 0 | . | 5 | | ಜ | Operatio | na]/Environment | Operational/Environmental Test Profiles Dev. | _ | _ | ı | _ | - | 1 2 | 0 | . | 5 | | ぉ | Utilizat | Utilization of 781 | | | | 1 | _ | 0 | _ | 5 | 0 | 5 | | જ | Procedur | procedures Similar to 781 Used | 781 Used | | 0 | 1 | 0 | 0 | 0 | 7 | | | | 33 | Constant | : Failure Rate / | Constant Failure Rate Assumed for Testing | | _ | ł | ŧ | • | 0 | | 9 | 5 | | \$ | 781 Appr | opriate for No | Appropriate for Nonelectronic Equipment | •• | , (| ١ | 0 | | 0 | <u>_</u> | . | 0 | | 47 | Accel era | Accelerated Testing Methods Utilized | thods Utilized | | 0 | 1 | 0 | 0 | 0 | | ا ر | | | 25 | Any Gove | erment Contract | Any Government Contracts Specify a RCM Program | | 0 | 1 | 0 | 0 | 0 | | 0 | 5 | | દ્ય | DID's Ad | Id to Effective | JID's Add to Effectiveness of Reliability Req. | <u>.</u> | _ | 1 | - | | 7 | | ، د | = | | ᇔ | Lack of | Standardization | | Parts | , , | 1 | , | 0 | - (| 0 | J (| 5 | | 55 | Separate | Rel. Specs. fo | Separate Rel. Specs. for Large and Small It | Items | _ | ı | _ | | 7 | <u> </u> | ۰ د | | | ያ | Effort by Eng. | y Eng. Societi(| Societies to Upgrade Rel. Sp | Specs. | 0 | ۱ | • | 0 | 0 | - (| J (| 3 | | 23 | Does Rug | gedization Req | Does Ruggedization Requirements Affect Rel. | | _ (| 1 | — (| 1 (| ======================================= | 0, | . | 7 | | 28a | Monelect | ronic Info. Av. | Monelectronic Info. Available for Rel. Analysis | ysis | 0, | 1 | ۰ د | | <u> </u> | = { | . | 5 | | 586 | Handbook | with Procedur | Handbook with Procedures/Guidance Possible | | | 1 | - | _ | 7 | <u>></u> | 2 | _ | GENERIC PRODUCT SUMMARY OF YES/NO RESPONSES 1 = YES 0 = NO - = NO RESPONSE | 4. 9 | POWER PLANT GENERATORS/ | | | | | | | TOTA | Ŋ | |----------------|--|--|--|----------|----------------|----------|--------------|----------------|--------| | • | Court Court Francisco | Covernment/Industry (6/I) | - | <u> </u> | - | U | - = | 0 1 | '≓
 | | Question | Subject | Respondee | 23 | 33 42 | 106 | 46 | - | - | 7 | | 4a | Utilization of 785 | | - | 0 | - | - | 10 | 2 0 | | | 4 | Requirements Similar to 785 Used | 785 Used | _ | _ | • | 1 | 30 | 00 | _ | | 2 | Mission vs. Logistics A | Logistics Reliability Considered | ı | _ | 0 | _ | - | 2 0 | | | Na | | ectronic Equipment | , | _ | _ | _ | 4 | 00 | 0 | | 116 | 785 Cost Effective for | Cost Effective for Nonelectronic Equipment | _ | _ | _ | <u></u> | 4 | 00 | 0 | | <u>8</u> 2 | FMEA Performed on Nonelectronic Equipment | ectronic Equipment | _ | _ | _ | _ | 4 | <u>0</u> | 0 | | 22 | Reliability Predictions | Reliability Predictions Used to Monitor Design | _ | _ | _ | 0 | 3 | = | 0 | | 24 | Overhaul/Maintenance Actions Included | tions Included | _ | - | 1 | 0 | 20 | _ | _ | | 52 | 756 Satisfactory to Nonelectronic Equip | electronic Equipment | 0 | 0 | 0 | _ | _ | 3 | o | | 27a | MIL-HDBK-5 Used to Assess Reliability | iss Reliability | 1 | 0 | 0 | 0 | 00 | | - | | 27b | MIL-HDBK-5 Satisfactory for Material | for Material Properties | 1 | • | 0 | ı | 0 | <u>0</u> | m | | න | Planned Reliability Growth Included | with Included in Program | _ | 0 - | 0 | _ | 2 1 | 20 | 0 | | 35 | Internal Parts Selection Procedures Utilized | n Procedures Utilized | 1 | 0 | - | 0 | <u>-</u> | 2 | | | 8 | Operational/Environmental Test Profiles Dev. | al Fest Profiles Dev. | _ | O . | 0 | 0 | 20 | 2 | 0 | | * | Utilization of 781 | | ı | -
- | , (| 0 | 0 (| 2 | | | જ દ | Procedures Similar to /8/ Used | 81 used | 1 (| . | ، د | <u>ی</u> |)
) | - (| - (| | 2 3 | Constant Failure Rate Assumed for Testing | ssumed for lesting | . | ~ ° | | - (| 2 | 0 <u>7</u> | 5, | | ₹ 5 | /or Appropriate for Morelectronic Equipment
Accelerated Testing Mathods Hilliad | More ectronic Equipment | , | 2 C | • (| ა c | <u> </u> | | - ,- | | 25 | Any Government Contracts Specify a RCM | S Specify a RCM Program | | | - | | 27 | 20 | o | | 53 | DID's Add to Effectiven | JID's Add to Effectiveness of Reliability Req. | _ | 0 | | _ | 2 | 2 | 0 | | 太 | Lack of Standardization of Nonelectronic | of Nonelectronic Parts | <u>, </u> | _ | _ | 0 | 0 | - 0 | 0 | | 22 | | r Large and Small Items | ~ | _ | ı | 0 | 30 | - | = | | 3 2 | Effort by Eng. Societie | Societies to Upgrade Rel. Specs. | ·
 | _ | • | 0 | 3 | - | = | | 2/ | tion | irements Affect Rel. | · · | 1 | 1 | _ | _ | 0 | m | | 8 8 | Monelectronic Info. Ava | Available for Rel. Analysis | 0 - | - | 1 = | 1 | 00 | <u> </u> | 20 | | 300 | nalidadok with Procedures/auldance rossible | יאל משו ממוצב בחיאות וויים | - |) | - | | <u>)</u> | <u>></u> | 5 | GENERIC PRODUCT SUMMARY OF YES/NO RESPONSES 1 = YES 0 = NO - NO RESPONSE また。 のでは、 | | والمراب والمرا | |--
--| | 2 8 | 11111111111111-0101 | | 6
75 | | | a £ | | | a 8 | | | 2 e | | | 9 c | -0-110-11111000001-0-00 | | 1 74 | | | 1
67 7 | | | 1
52 6 | | | | | | 15. STRUCTURES Government/Industry (G/I) Question Subject Respondee | ilization of 785 quirements Similar to 785 ssion vs. Logistics Relii 5 Applicable to Nonelect 5 Cost Effective for Non EA Performed on Nonelect 1 iability Predictions Us erhaul/Maintenance Actio 6 Satisfactory to Nonele L-HDBK-5 Used to Assess L-HDBK-5 Satisfactory fo anned Reliability Growth ternal Parts Selection P erational/Environmental ilization of 781 ocedures Similar to 781 instant Failure Rate Assu I Appropriate for Nonele celerated Testing Method y Government Contracts S D's Add to Effectiveness ck of Standardization of parate Rel. Specs. for L fort by Eng. Societies tu es Ruggedization Require nelectronic Info. Availal | | And the first of the second | | • | | | |--|---|---|---|--| | over the grant over the | | GENERIC PRODUCT SUMMARY OF YES/NO RESPONSES 1 = YES | | | | m - n, sant prop. 1 | Ónes | 15. STRUCTURES Government/Industry (G/I) 116 Question Subject Respondee | 107ALS - 0 - 116 - 116 | | | and the Parker has the Second Second | 44
110
116
118
22
24
24 | | -00000 | | | TUS | 105 | HOBK-5 Used to Assess Reliability HOBK-5 Satisfactory for Material Froperties and Reliability Growth Included in Program Parts Selection Procedures Utilized ational/Environmental Test Profiles Dev. Itzation of 781 Sedures Similar to 781 Used | 20
20
20
20
20
20
20
20
20
20
20
20
20
2 | | | agent and the control of | 84488884488 | riate for Nonelectronic Equipment riate for Nonelectronic Equipment i Testing Methods Utilized Ment Contracts Specify a RCM Program to Effectiveness of Reliability Req. andardization of Nonelectronic Parts el. Specs. for Large and Swall Items ing. Societies to Upgrade Rel. Specs. dization Requirements Affect Rel. and Nonelectronic Specs. | 2 2 2 2 2 3 3 3 3 5 5 5 5 5 5 5 5 5 5 5 | | GENERIC PRODUCT SUMMARY OF YES/NO RESPONSES | | | | _ | | _ | | | | _ | _ | _ | | | _ | _ | _ | | _ | | _ | _ | _ | _ | | _ | |------------------------------------|--|---|------------------|---|---|---|---|------------|--|-----|---|------------|-----------|---|---|---|------------|------------|--|--|-----|---|-----|--|---| | | | I
69 | 0 | 0 | - | | - | , , | | . 0 | 1 | , (| - | - / | 0 | _ | , | (| 5 – | | 0 | 0 | - 6 | > ~~ | | | | | 1 | 0 | _ | | | - | 0, | c | 0 | 0 | (| r | - 0 | _ | 0 | ١, | - (| > | (| - | _ | • | - | , | | | | 3 | _ | 0 | 0 - | _ ,_ | - | 0 | > C | 0 | ı | 0 | ۰ ، | | 0 | _ | , (|) | > ~ | . | _ | ı | 1 6 | - | , | | 1 = YES 0 = NO - = NO RESPONSE | 16. HOME APPLIANCES/HAND HELD MECHANISMS | Government/Industry (G/I) Westion Subject Respondee | ilization of 785 | _ | 10 Mission vs. Logistics Reliability Considered | lla /85 Applicable to Monelectronic Equipment | FMEA Performed on Monelectronic Equipment | Relia | 24 Overhaul/Maintenance Actions Included of 756 Cariefactory to Nonelectronic Fouriement | _ | _ | _ | | 33 Uperational/Environmental lest Profiles Dev. | | | | | 52 Any Government Contracts Specify a MLM Program 52 nin | lack of Standardization of Nonelectronic | - , | | | 38a Nonelectronic info. Available for Kei. Analysisi
38h Handhork with Procedures/Guidance Possible | • | MERCHANIST CONTROL OF A GENERIC PROBUCT SUMMARY OF YES/NO RESPONSES 1 = YES 0 = NO - = NO RESPONSE | 17.
Question | 17. HYDRAULIC/FMEU | | C COMPONENTS
Government/Industry
Respondee | (E/1) | H 70 H | H 4 | - w w | ⊷ ∞ o | 16 | 12 | H 27 ' | . 12. | 1 1
26 77 | 11 6 | 1 1 77 41 | 11 6 | 77 41 42 | I I I I I I I I I I I I I I I I I I I | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | |-----------------|--------------------------|----------------------|--|------------|--------------|-------------|-------------|------------|------------|------------|----------|----------|--------------|--------------|---|-----------|-----------|---------------------------------------|---------------------------------------| | 4 | Utilization of 789 | 5
lar to 785 | liced | | | 0 1 | I | 00 | - | o ~ | - 1 | | o ~ |) | 0 · · · · · · · · · · · · · · · · · · · | 0 | | | | | 2 2 | Mission Vs. Logist | Hics | Reliability Considered | ered | . 1 | | - | , — | _ | 0 | , | | · I | | | | | - 1 1 - 1 1 | | | 11a | 785 Applicable to | 200 | onic Equipment | ىپ | _ | ~ | ŧ | _ | ~ | _ | , | _ | - | 0 | 0 - 1 | - 1 - 0 - | 0 - 1 - 0 | 10-1-01 | 1 1 0 - 1 - 0 1 | | 921 | 785 Cost Effectiw | 4 | for Monelectronic Equip | ipment | | _ | |
ŧ | _ | _ | _ | - | • | 1 | | | 0 - 1 - 0 | 1 - 0 1 | 0 | | 8 | FNEA Performed on | An Monelectronic | anic Equipment | يد | _ | _ | _ | - | ,_ | | - | - | J | 0 | 0 0 | 0 0 1 | 0 0 1 1 | 1 1 1 0 0 | | | 2 | Reliability Predi | fictions Used | i to Monitor Design | Design | _ | - | } (| 0 | 0 | (| , | | (|)
 | 0 - | - 0 | 0 | | | | * | Overhaul/Maintena | nance Actions | Included | : | | | 0 | _ | (| ·
, (| - `
; | 0 | - (| - | 0 | 0 0 - 1 | | | | | ž | 756 Satisfactory | to Monelectronic | Equip | ent | <u> </u> | • | 0 | | o (| . | - · | 0 | ı
د | 0 | - 0 | 0 | 0 - 0 | | | | 774 | MIL-HDBK-5 Used to | Assess (| Reliability | | 1 | O | 0 | 0 | 0 | - | -
- | 0 | - | 0 | 0 - 0 | - 0 - 0 | 1 - 0 - 0 | 0 - 0 - 0 | | | 70 | MIL-HDBK-5 Satis | sfactory for | Katerial | Properties | - 5 | _ | ı | ı | 0 | ı | | | • | 1 | 1
{
! | 1 1 | | | 0 - 1 | | 2) | Planned Reliabili | ty Growth | Included in Pr | rogram | | | - | - | | — | O | _ | | _ | 0 | - 0 - 1 | - 0 | 0 - 0 | 1 1 0 - 1 0 1 | | S | Internal Parts Sel | Selection Procedures | cedures Util | ized | <u> </u> | _ | ı | 0 | | _ | _ | 0 | _ | _ | 0
-
- | | 1 0 1 1 | 1 1 0 1 1 | | | es. | Operational/Envir | omental | Test Profiles I | Dev. | | 0 | | _ | | 0 | 0 | _ | | - | 0 | L 0 L | 0 1 0 0 | | | | 4 | Utilization of 781 | | | | <u> </u> | 0 | 0 | | 0 | 0 | O | | Ç | 0 | 0 | - 0 0 0 | 0 - 0 0 0 | 0 - 0 0 0 | 0 0 0 - 0 0 0 | | ι
ت | Procedures Similar | r to 781 | Used | | 1 | 0 | 1 | 0 | _ | 0 | | _ | - | - - | 0
0 | | 0 0 0 0 0 | 100100 | | | ర్ల | Constant Failure | Rate Assum | ed for Testing | ā | <u>-</u> | 0 | 1 | - | 0 | . | · | | 0 | _ | 0 | 0 1 1 | 0 1 1 1 1 | | | | 2 | 781 Appropriate fo | for Monelectronic | ronic Equipment | ent | _ | ı | 0 | _ | | 0 | | | 0 | 0 | 0 - 0 | - 0 - 0 | 0 - 0 - 0 | 0 0 - 0 - 0 | - 0 0 - 0 - 0 | | 7 | Accelerated Testi | 2 | Methods Utilized | | | 0 | 0 | 0 | - | - | _ | O | _ | _ | 0 | - O - | 1 0 1 | 0 | | | 22 | Any Government Col | itracts | Specify a RCM Pi | rogram | | 1 | _ | 0 | 0 | 0 | | -
- | • | - | 0 - 0 | - 0 - 0 | 0 - 0 - 1 | 0 - 0 - 0 | 1 0 1 - 0 - 0 | | n | DID's Add to Effec | :tiveness | of Reliability | y Req. | _ | ١ | | - | 0 | 0 | , | <u> </u> | _ |
 | 0 | 0 - 0 | - 0 - 0 | 0 - 0 - 0 | | | * | Lack of Standard | zation of | Nonelectronic | Parts | | • | ı | _ | _ | _ | _ | _ | _ | '
 | ,
, | | 1 - 1 - 1 | | | | řδ | Separate Rel. Spec | s. for l | arge and Small | Items | | • | ~ | p | - | | ·
 | | • | - | | - 1 1 0 | - 1 1 0 1 | - 1 1 0 1 1 | - 1 1 0 1 1 - | | يو | Effort by Eng. Societies | ocieties to | Upgrade Rel. | Specs | - | 0 | 0 | 0 | , _ | | , - | _ | - | | | 1 1 1 | | - - | | | 1.5 | Does Ruggedization | þ | ents Affect Re | el. | _ | 0 | 0 | 0 | *** | _ | | _ | _ | _ | | | | | | | æ | Monelectronic Info | rfo. Available | for | nalysi | 2 | ŧ | - | _ | ı | | | | ı | - | - | | | 1 1 1 | 0 | | 8 | Handbook with Pro | ocedures/Guidance | dance Possibl | j
e | <u> </u> | ı | 0 | 0 | 1 | , - | - | | • | • | • | 1 1 1 | | | 1 1 1 1 1 1 | THE MEANING OF THE SECOND CONTROL SEC GENERIC PRODUCT SUMMRY OF YES/NO RESPONSES 1 = YES 0 = 10 - = 10 response A STATE OF THE STA | • | 17. HYDRAULIC/PNEUMATIC COMPONENTS | | | | | | | | | | | | | | | | |----------|--|----------|-------------|-------------|-------------|-------------|----------|---------|--------|--------|----------|----------|----------|------------|----------|---| | | Government/Industry (G/I) | - | | | | | I | | 9 | | | | | | 9 | - | | Question | ion Subject Respondee | 2 | ಹ | 88 | 8 | 8 | 105 | <u></u> | · I | 있
원 | 22 | 3 33 | 2 | 25 | | _ | | ₽¥ | Utilization of 785 | _ | 0 | 0 | 0 | _ | _ | _) | ì | | , | _ | _ | 0 | 0 | | | 4 | Requirements Similar to 785 Used | 1 | - | 0 | 0 | 0 | 0 | ı | • | | | _ | _ | _ | | _ | | 10 | . Logistics Relia | | ١ | | 0 | 0 | _ | _ | _ | 0 | -
0 | _
o | | | 0 | _ | | <u> </u> | 785 Applicable to Monelectronic Equipment | 0 | _ | 0 | _ | - | _ | _ | _ | _ | ·
 | _ | _ | | _ | _ | | 116 | | 0 | _ | 0 | - | _ | _ | _ | _ | _ | leer. | _ | _ | | _ | _ | | 8 | med on Nonelectronic Equip | _ | / | _ | | _ | _ | . 1 | 0 | | ·
 | _ | | | _ | | | 2 | | 0 | 0 | 0 | 0 | - | 0 | 0 | 0 | _ | _ | _ | | _ | 0 | _ | | 24 | intenance Actions Included | _ | 1 | 0 | _ | _ | 0 | | 0 | 0 | 0 | _ | _ | _ | _ | _ | | 52 | 756 Satisfactory to Nonelectronic Equipment | 0 | 1 | 0 | - | - | _ | 1 | • | _ | O | • | • | • | • | _ | | 273 | to Assess Reliabil | 0 | 0 | 0 | 0 | _ | 0 | ı | 0 | 0 | O | _ | <u>'</u> | • | 0 | - | | 27b | Satisfactory for Mater | <u></u> | 0 | 0 | 1 | | - | 1 | , | , | | _ | <u>'</u> | • | 1 | - | | ຊ | Planned Reliability Growth Included in Program | 0 | 0 | 0 | 0 | 0 | | | 1 | _ | _ | _ | _ | | 0 | _ | | 25 | Internal Parts Selection Procedures Utilized | 0 | - | _ | - - | | _ | ı | 1 | 0 | | <u> </u> | | • | 0 | | | 8 | Operational/Environmental Test Profiles Dev. | | _ | _ | <u></u> | - | _ | 0 | • | _ | _ | _ | - | - | 0 | | | 7 | | _ | 0 | 0 | 0 | 0 | 0 | . 1 | 0 | 0 | _ | _ | | _ | 0 | _ | | 35 | Sim | 0 | • | • | 0 | 0 | 0 | 1_ | _ | _ | -
0 | _ | _ | - | • | | | 88 | Constant Failure Rate Assumed for Testing | _ | _ | ŧ | ı | _ | 0 | • | • | | 0 | _ | _ | _ | ı | _ | | 2 | 78] Appropriate for Monelectronic Equipment | 0 | 1 | ı | 1 | 0 | 0 | ı | -
0 | 0 | • | _ | _ | 0 | • | _ | | 11 | utiliza | 0 | 0 | _ | | _ | _ | 1 | 1 | _ | _ | <u>-</u> | _ | _ | 0 | _ | | 25 | Any Government Contracts Specify a RCM Program | 0 | 0 | 0 | 0 | 0 | 0 | 1 | - | 0 | _ | _ | · | 0 | 0 | | | 53 | DID's Add to Effectiveness of Reliability Req. | 1 | 0 | 0 | - | _ | _ | • | • | _ | _ | _ | <u>'</u> | _ | | _ | | な | Lack of Standardization of Nomelectronic Parts | 1 | _ | _ | , | - | _ | _ | 1 | _ | _ | _ | _ | | , | _ | | 55 | Separate Rel. Specs. for Large and Small Items | 1 | | _ | 0 | 0 | _ | _ | 1 | 0 | • | ` | <u>'</u> | _ | • | _ | | 18 | Societies | 0 | 0 | 1 | 0 | ı | _ | 0 | 0 | 0 | 0 | | | • | 0 | | | 23 | edization Requirement | 0 | 0 | 1 | 0 | ŧ | <u> </u> | 0 | -
- | _ | -
- | | | O , | 0 | | | 3 | JC | 1 | • | 1 | - (| | _ (| | , | | ·
- (| - ,
ı | '
4 | - (| 1 (| | | 28c | Handbook with Procedures/Guidance Possible | <u> </u> | 0 | _ | 0 | - | _
5 | 1 | |
 | ·
• | _ | _ | . | - | _ | GENERIC PRODUCT SUMMARY OF YES/NO RESPONSES 1 = YES 0 = NO - = NO RESPONSE | 10 16 16 16 | 2 v 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 11 6 2 10 10 6 | |--|--|----------------| | 6 6 6
72 77 81 | | | | 17. HYDRAUE.IC/PNEUMATIC COMPONENTS Government/Industry (G/I) Cuestion Subject Respondee | ilization of 785 quirements Similar to 786 ssion vs. Logistics Relificable to Monelect 5 Cost Effective for Mon EA Performed on Monelect 11ability Predictions Us- erhaul/Maintenance Action 6 Satisfactory to Monelect 1-HDBK-5 Used to Assess 1-HDBK-5 Satisfactory for anned Reliability Growth errail Parts Selection Predictional/Environmental filization of 781 ocedures Similar to 781 notedures Similar to 781 notedures Similar to 781 ocedures Similar to 781 ocedures Similar to 781 ocedures Similar to 781 ocedures Similar to 781 parate Failure Rate Assu fovernment Contracts Si 0's Add to Effectiveness ck of Standardization of parate Rei. Specs. for Li fort by Eng. Societies th es Ruggedization Require nelectronic Info. Availal | Handbook with | GENERIC PRODUCT SUMMRY OF YES/NO RESPONSES | RESPONSE | |------------| | 2 | | 1 | | 9 × | | 0 | | = YES | | _ | A STATE OF THE PROPERTY | 18. | ELECTRICAL COMPONENTS | | | | | | | | | | | | |-------------|---|--|--------------|--------------|-------------|---------|----------|------------------|-------------|-------------|-------------|---| | Question | Governme
Subject Res | Government/Industry (G/I)
Respondee | 1 1 06 08 08 | - 8 | -= | - 2 | 1 57 66 | I I I 1 66 69 79 | 79 | - 6 | ~8 | | | 4a Utiliz | 785 | | _ | 0 | 0 | _ | 0 | | | 0 | - | | | 4b Requir | Requirements Similar to 785 Used | 3 | 1 | 0 | | 0 | • | | | 0 | 0 | _ | | _ | Hission vs. Logistics Reliability Considered | lity Considered | | - | 0 | 0 | _
• | _ | _ | 0 | 0 | _ | | 11a 785 Ap | Applicable to Monelectronic Equipment | ic Equipment | 1 | _ | ı | _ | _ | _ | _ | _ | _ | _ | | • | 785 Cost Effective for Monelectronic Equip | tronic Equipment | | t | ı | _ | _ | _ | _ | _ | ļ-m | _ | | _ | Performed on Monelectron | Monelectronic Equipment | _ | _ |
_ | _ | _ | _ | | _ | _ | _ | | | Reliability Predictions Used to Monitor Design | to Monitor Design | _ | 0 | | 0 | _ | | | 0 | - | _ | | _ | Overhaul/Maintenance Actions Included | acluded | 0 | _ | _ | _ | 0 | _ | _ | _ | | | | 756 | Satisfactory to Monelectronic Equip | anic Equipment | 0 | ŧ | | 0 | _ | _ | - | _ | | _ | | 27a MIL-180 | IIL-HDBK-5 Used to Assess Reliability | ability | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | _ | _ | | _ | 411-4DBK-5 Satisfactory for Material Properties | iterial Properties | ٠ | ı | • | | | | • | 1 | _ | _ | | 29 Planne | Planned Reliability Growth Included | :luded in Program | _ | _ | _ | <u></u> | _ | | | 0 | 0 | _ | | | Internal Parts Selection Procedures Utilized | dures Utilized | 1 | ပ | | ·
 | _ | _ | _ | _ | _ | _ | | _ | Operational/Environmental Test | mental Test Profiles Dev. | 0 | _ | _ | _ | _ | _ | _ | _ | , | _ | | _ | Utilization of 781 | | 0 | | _ | 0 | _ | | - | 0 | 0 | _ | | 35 Proced | Procedures Similar to 781 Used | | • | 0 | 0 | 0 | 0 | - | - | 0 | 0 | _ | | _ | Constant Failure Rate Assumed for | for Testing | • | _ | _ | ·
 | - | _ | _ | 1 | _ | | | | fate for | Monelectronic Equipment | 0 | _ | 0 | 1 | 0 | _ | | ı | 0 | _ | | | ated Testing Methods Utilized | Z | 0 | 0 | • | 0 | 0 | _ | 0 | _ | | | | _ | iny Government Contracts Specify a | fy a RCM Program | _ | 0 | • | O | o
= | - | 0 | 0 | 0 | _ | | | MID's Add to Effectiveness of Reliability | Reliability Req. | _ | - | • | _ | _ | - | 0 | - | _ | | | | .ack of Standardization of Monelectronic Parts | | 1 | , | | | ' | | | | _ | | | ν, | Separate Rel. Specs. for Large and Small | and Small Items | | _ | 0 | -
0 | _ | 0 | 0 | 0 | 0 | | | 56 Effort | Effort by Eng. Societies to Upgrade Rel | grade Rel. Specs. | 0 | 0 | • | _ | - | 0 | _ | 0 | ı | | | | | s Affect hel. | , | , | | 0 | - I | | • | _ | 1 | | | Sea Rosele | Mobelectronic info. Available for Rei. And | for Rel. Analysis | ۰, | ۰, | | 1 | ~
o• | ۰, | 1 - | ۰, | _ | | | • | a mich recedures/suidance Possible | ACE POSSIBILE | | _ | | - | _ | _ | • | _ | 1 | | GENERIC PRODUCT SUMMARY OF YES/NO RESPONSES 1 = YES = 0 = NO = NO = NO SPONSE | • | | 0 | 4 5 | 00 | 2 | 23 | 0 | = | 0 2 | <u>~</u> | 0 2 | 9/7 | 0 2 | | <u> </u> | <u>-</u> | 1 | 2 4 | 23 | 1 2 | 1 2 | 1 2 | 4 5 | 0 2 | 23 | 4 | 3 2 | 3 2 | |---------------------------|--|----------------------|----------------------------------|-----|--------------|----------------------------------|-----------|------------------------|-------------|---|----------|--------------|-----|----------------------------|-------------|--------------------|----------|----------|----------|-------------|-----|----------|------------|----------|----------------|----------------------|-----------|--| | TOTALS | -1E | 4 | <u>-</u> 9 | 5 2 | 00 | 00 | 0 | 3 2 | 23 | 3 | 9 | 0 | 2 3 | 13 | 7 | 43 | 0 2 | <u>-</u> | 53 | 2 | 7 5 | <u>-</u> | 0 | 7 | - | 0 | | 0 | | | 9 - | 9 | <u>-</u> 0 | 5 | 8 7 | * | 10 | 9 | 8 | 9 | <u> </u> | 9 | 8 2 | 8 | 8 | 63 | <u>6</u> | 7 3 | 3 | = | - | | 63 | _ | <u>0</u> | 5 | 2 | 7 5 | | | 6
81 | 0 | _ | 0 | _ | • | _ | 0 | 0 | _ | 0 | • | 0 | | _ | 0 | 0 | • | 1 | 0 | 0 | _ | 0 | _ | 0 | 1 | (| _ | | | 35 | ŧ | ١ | _ | ١ | ٠ | 0 | | 0 | ١ | 0 | ۱ | 0 | - | 0 | _ | 0 | _ | 0 | | 0 | _ | • | - | ı | — | 0 | | | | 200 | 0 | ŧ | - | _ | • | 0 | • | 1 | ı | 1 | 1 | 1 | 0 | _ | 0 | 1 | | ı | ŧ | ı | • | • | 1 | ł | • | ı | • | | | 2 C | _ | 0 | _ | - | _ | _ | _ | | 0 | 0 | ١ | _ | _ | - | _ | 0 | ł | 0 | 0 | 0 | _ | _ | _ | ŧ | _ | 9 | _ | | | 96 | _ | ı | _ | _ | ' | 0 | | _ | _ | 0 | 1 | 0 | 0 | | _ | 0 | _ | ~ | 0 | 0 | _ | 0 | ١ | 0 | — | 0 | — | | | 9 8 | 1 | ı | 0 | _ | | | | 0 | | 0 | • | _ | 0 | _ | 0 | 0 | ł | 0 | 0 | 0 | _ | _ | 0 | 0 | • | 0 | 1 | | | 13 | ١ | 1 | _ | _ | _ | • | 0 | ١ | • | 1 | 1 | 1 | 1 | 0 | ı | 1 | 1 | 1 | ł | ١ | 1 | | _ | 0 | | 1 | _ | | 18. ELECTRICAL COMPONENTS | Government/Industry (G/I) Question Subject Respondee | i Utilization of 785 | Requirements Similar to 785 Used | | 785 Applicab | 785 Cost Effective for Monelecto | FREA Perf | ty Predictions Used to | Overhaul/Ka | 5 756 Satisfactory to Monelectronic Equipment | | | | Internal Parts Selection P | Operational | Utilization of 781 | | | | | | | Lack of Si | Separate | Effort by Eng. | Does Ruggedization R | Konelectr | b Handbook with Procedures/Guidance Possible | GENERALC PRODUCT SIMPLARY OF YES/NO RESPONSES 1 = YES 0 = NO - NO RESPONSE | 25 445 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. | 19. SENSORS/GYROS/INST Gov On Subject Utilization of 785 Requirements Similar to Hission vs. Logistics Re 785 Applicable to Nonele 785 Cost Effective for N FMEA Performed on Nonele 785 Cost Effective for N FMEA Performed on Nonele 785 Cost Effective for N 785 Cost Effective for N 786 Satisfactory 781-HDBK-5 Satisfactory 781-HDBK-5 Satisfactory 781-HDBK-5 Satisfactory 781-HDBK-5 Satisfactory 781-Appropriate for None | Government/Industry (G/I) Respondee lar to 785 Used Lics Reliability Considered Lics Reliability Considered Lics Reliability Considered Monelectronic Equipment For Monelectronic Equipment Lions Used to Monitor Design Nonelectronic Equipment Assess Reliability Assess Reliability Conth Included in Program Lo 781 Used Rate Assumed for Testing To 781 Used Rate Assumed for Testing Thomelectronic Equipment The Assumed for Testing Liveness of Reliability Requirements Liveness of Reliability Requirements Liveness of Reliability Requirements | | HN 1100000001001 |
MT | | H8 -0 | HO 0 1 | 13 - 1 - 1 10 1 - 00 10 1 - 1 - 10 00 1 | M9 0 1 | H# 0-101100001-1000- | 98 1100-01-0-001000 | 97 -00 10-0-0 1100 1111 | 92 11-110-01010-0-0-0-1 | 20 - 1 1 | |--|---|--|---|-------------|------------------|---|-------|-------|--------|---|--------|----------------------|---------------------|-------------------------|-------------------------|----------| | ន្ត្រីនិងឧនស | Separa
Effort
Boes R
Kandbo | | 28 8 8 E | 3 5 5 8 8 S | -0-1- |
· · · · · · · · · · · · · · · · · · · | 0-111 | | | -1-1- | ~~~ | -010- | -00101 | 111 | - 1-0- | 001 | The state of s GENERIC PRODUCT SUMMARY OF YES/NO RESPONSES 1 = YES 0 = NO - = NO RESPONSE | | 2 |
--|---------------------| | 19. SENSORS/GYROS/INSTRUMENTS Government/Industry (G/I) Government/Industry (G/I) 4. Utilization of 786 4. Utilization of 786 10. Mission vs. Logistics Reliability Considered 11. 785 Applicable to Nonelectronic Equipment 11. 785 Cost Effective for Nonelectronic Equipment 12. Reliability Predictions Used to Nonitor Design 24. Overhaul/Maintenance Actions Included 25. 756 Satisfactory to Nonelectronic Equipment 27. MIL-HOBK-5 Used to Assess Reliability 27. MIL-HOBK-5 Satisfactory for Material Properties 28. Planned Reliability Growth Included in Program 29. Planned Reliability Growth Included in Program 29. Internal Parts Selection Procedures Utilized 29. Utilization of 781 Procedures Similar to 781 Used Constant Failure Rate Assumed for Testing 29. Onestant Failure Rate Assumed for Testing 20. Any Government Contracts Specify a RCM Program 29. Dies Ruggedization of Nonelectronic Parts 20. Lack of Standardization of Nonelectronic Parts 20. Does Ruggedization Requirements Affect Rel. 20. Does Ruggedization Auxilabile Analysic | Procedures/Guidance | GENERIC PRODUCT SUMMRY OF YES/NO RESPONSES 1 = YES 0 = NO - = NO RESPONSE the second of th | | 20. MECHANICAL COMPONENTS | | | | | | | | | | | | | | | | | |-----|---|------------|---------------|----------|----------|---------|----------|----------|---------------|---------------|----------|----------|--------|----------|------------|--------------|------------| | | Gover | y (6/1) | H | H | - | | | | | | | | | | ₩ 8 | | • | | See | Question Subject Respondee | | م | ∞ | • | 2 | 7 | 2 | 2 | 3
₹ | 2 | 5/ 63 | 2 | \$ | | <u> </u> | T ' | | 7 | Utilization of 785 | | _ | 0 | _ | 0 | - | 0 | 0 | • | _ | 0 | _ | _ | _ | - | _ | | 4 | | | • | 0 | • | 0 | 0 | 0 | 0 | • | • | 1 | | _ | _ | <u> </u> | | | 2 | | dered | | _ | - | 0 | 0 | 0 | _ | 0 | , | 0 | _ | _ | | - | _ | | 7 | 785 Applicable to Monelectronic Ed | at | ŧ | _ | _ | | - | _ | 0 | · | 0 | _ | _ | _ | _ | • | _ | | 118 | | uipment | _ | ı | _ | _ | _ | _ | 0 | 1 | 0 | _ | _ | _ | _ | | | | 8 | FREA Performed on M | . | , | _ | , | _ | | _ | - | _ | _ | | _ | _ | _ | _ | | | 2 | Reliability Predictions Used to Monitor | Design | _ | 0 | _ | _ | 0 | ~ | _ | _ | _ | _ | _ | _ | _ | _ | | | 77 | Overhaul/Mainten |) | 0 | | 0 | 0 | ~ | 0 | | • | , | 0 | _ | ·
- | • | - | _ | | 22 | | ment - | 0 | • | ŧ | _ | 0 | _ | 0 | | 0 | 0 | _ | <u>.</u> | • | - | _ | | 273 | MIL-MDBK-5 Used t | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | • | _ | _
_ | -
0 | _ | _ | _ | | | 279 | MIL-HDBK-5 Satis | operties | ŧ | ŧ | ŧ | ŧ | ŧ | 0 | 1 | • | _ | | 1 | _ | _ | | | | 2 | | Program | - | _ | 0 | 0 | | _ | • | , | _ | _ | _ | _ | _ | o | | | × | Internal Parts Selection Procedures Uti | lized | • | 0 | _ | 0 | _ | 0 | _ | 1 | _ | _ | _ | | _ | _ | | | æ | Operational/Environmental | Dev. | 0 | | 0 | _ | _ | 0 | 1 | | _ | 1 | _ | _ | _ | _ | | | ਨ | | | 0 | - | 0 | 0 | 0 | _ | _ | 1 | 0 | , | _ | _ | _ | •
- | | | 38 | _ | | ŧ | 0 | | 0 | 0 | 0 | 0 | • | 0 | 0 | _ | _ | • | · | | | 8 | | 50 | ٠ | _ | 0 | _ | _ | _ | | 0 | _ | _ | | _ | | | | | 4 | • | Fat | 0 | | ŧ | 0 | • | | 0 | 1 | 0 | 0 | | | _ | 0 | _ | | 47 | | | 0 | 0 | | ŧ | 0 | - | 1 | _ | _ | · · | _ | _ | _ |) | | | Z | | Progra | - | 0 | | 0 | 0 | 0 | _ | , | , | _ · | -
- | _ | _ | - | _ | | ß | | ty Req. | ~ | _ | _ | _ | _ | 0 | 0 | • | | _ | · | | _ | · | | | Z, | | c Parts | 1 | _ | | 1 | 1 | _ | | | | | _ | • | | , | | | ĸ | Separate Rel. | 1 Items | - | | _ | _ | 0 | _ | | • | <u> </u> | -
0 | | _ | | - | | | 28 | | . Specs. | 0 | 0 | 1 | 0 | _ | 0 | _ | | _ | _ | -
- | _ | _ | - | _ | | 15 | _ | - E | , (| , | | _ | 0 | • | ~ (| • | , | <u> </u> | | | | - | _ | | 8 | | Kaalysis | > - | - | - | | • | | > - | 1 - | 1 pa | -
- |) ~ | - | | - (| | | 8 | NANGDOOK WITH Procedures/Handance Possi | בוע
בוע | - | - | • | ı | ı | - | - | - | - | - | | - | _ |) | | The second secon GENERIC PRODUCT SUMMARY OF YES/NO RESPONSES $\tilde{I} = YES$ 0 = NO - = NO RESPONSE ## MISSION of Rome Air Development Center RADC plans and executes research, development, test and selected acquisition programs in support of Command, Control Communications and Intelligence (C³I) activities. Technical and engineering support within areas of technical competence is provided to ESP Program Offices (POs) and other ESD elements. The principal technical mission areas are communications, electromagnetic guidance and control, surveillance of ground and aerospace objects, intelligence data collection and handling, information system technology, ionospheric propagation, solid state sciences, micronave physics and electronic reliability, maintainability and compatibility.